<u>Monday, October 19, 2020</u> 7:30 p.m.

Virtual Meeting using Zoom

Meeting ID: 845-1987-6965 (Instructions for accessing below)

To view and participate in this virtual meeting on your phone, download the "Zoom Cloud Meetings" app in any app store or at www.zoom.us. At the above date and time, click on "Join a Meeting" and enter the following Meeting ID: 845-1987-6965 Link: https://us02web.zoom.us/j/84519876965

To view and participate in this virtual meeting on your computer, at the above date and time, go to www.zoom.us click "Join a Meeting" and enter the following ID: 845-1987-6965

HEARINGS begin at 7:30pm.

Public notice is hereby given that 540 Hillside Avenue LLC C/O SSG Hillside Needham LLC, located at 540 Hillside Ave, has made application to the Design Review Board for a Special Permit pursuant to the Sign By-Law Section 5.5.3.2, (Wall sign exceeding 32 Sq. Ft.) and Section 5.5.3.2(b) (Allowing additional wall sign) any other applicable sections of the By-law.

This hearing will be continued to Monday, November 2, 2020 at 7:30pm.

APPLICANTS:

(Items for which a specific time has not been assigned may be taken out of order.)

1. Boston Properties applying for site plan review of the property located at 140 Kendrick Street.

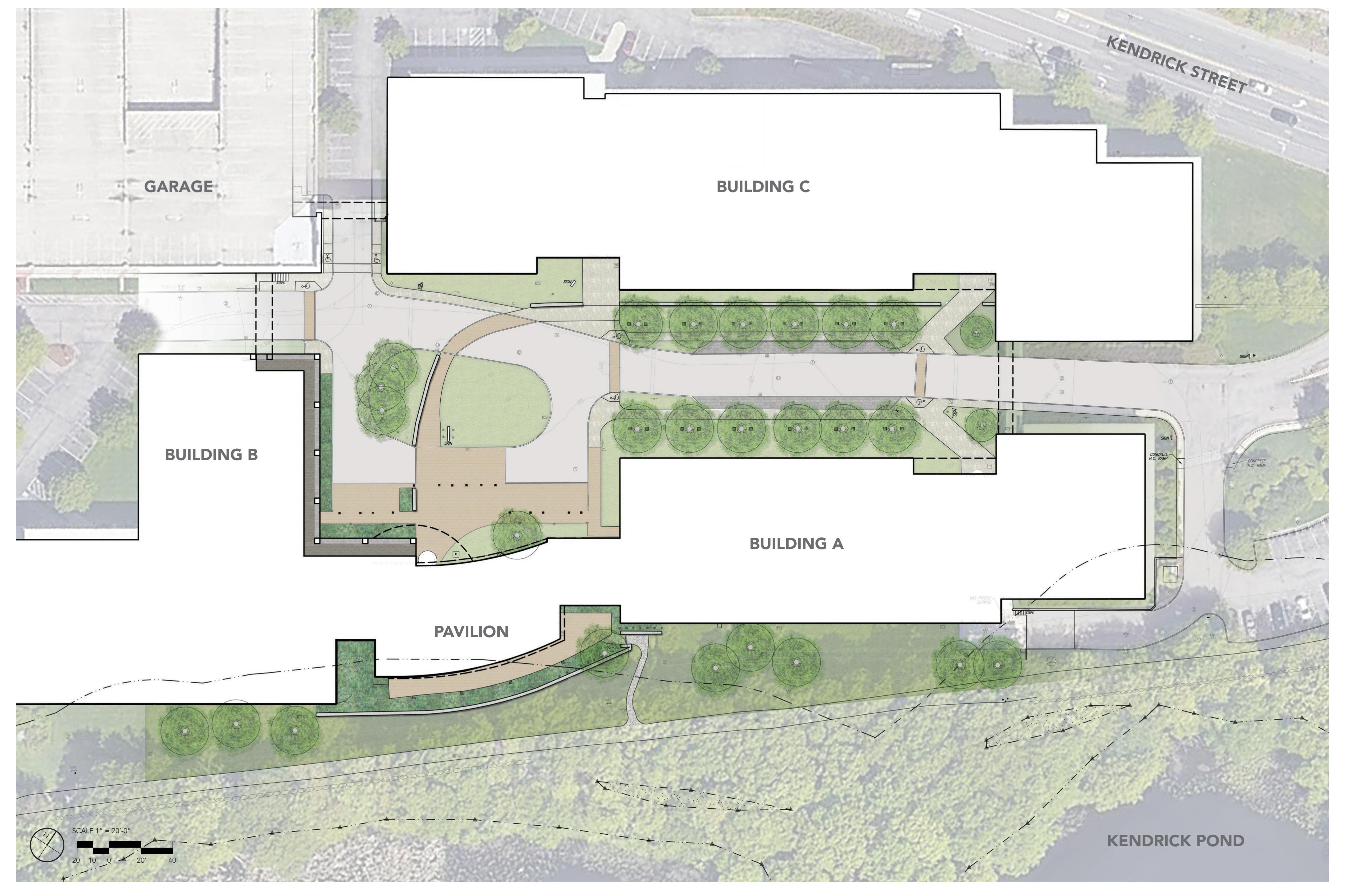
REVIEW Minutes of 10/5/2020 meeting.

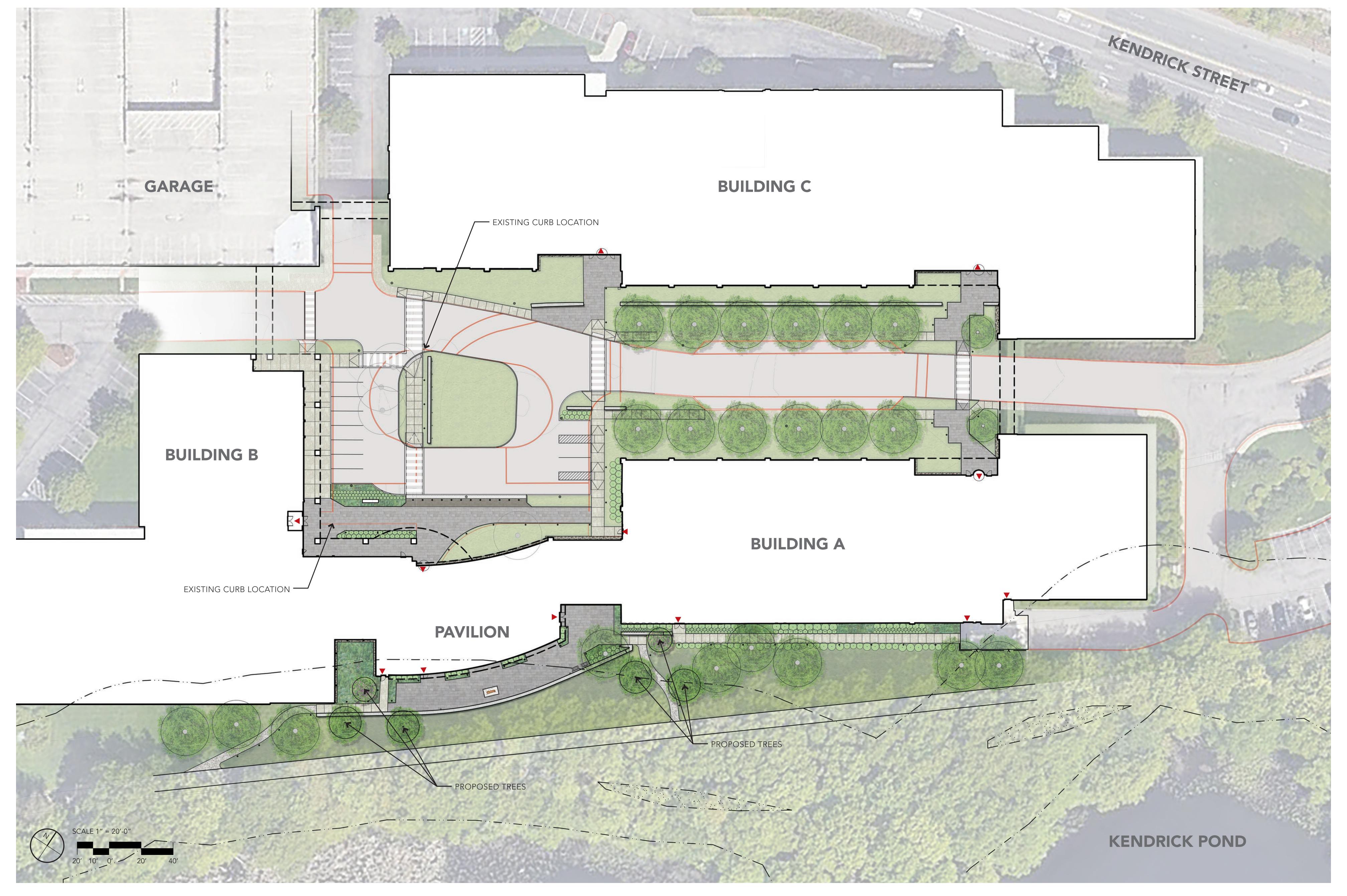
Next Public Meeting – November 2, 2020 at 7:30pm via Zoom Webinar

of Nocol

TOWN OF NEEDHAM

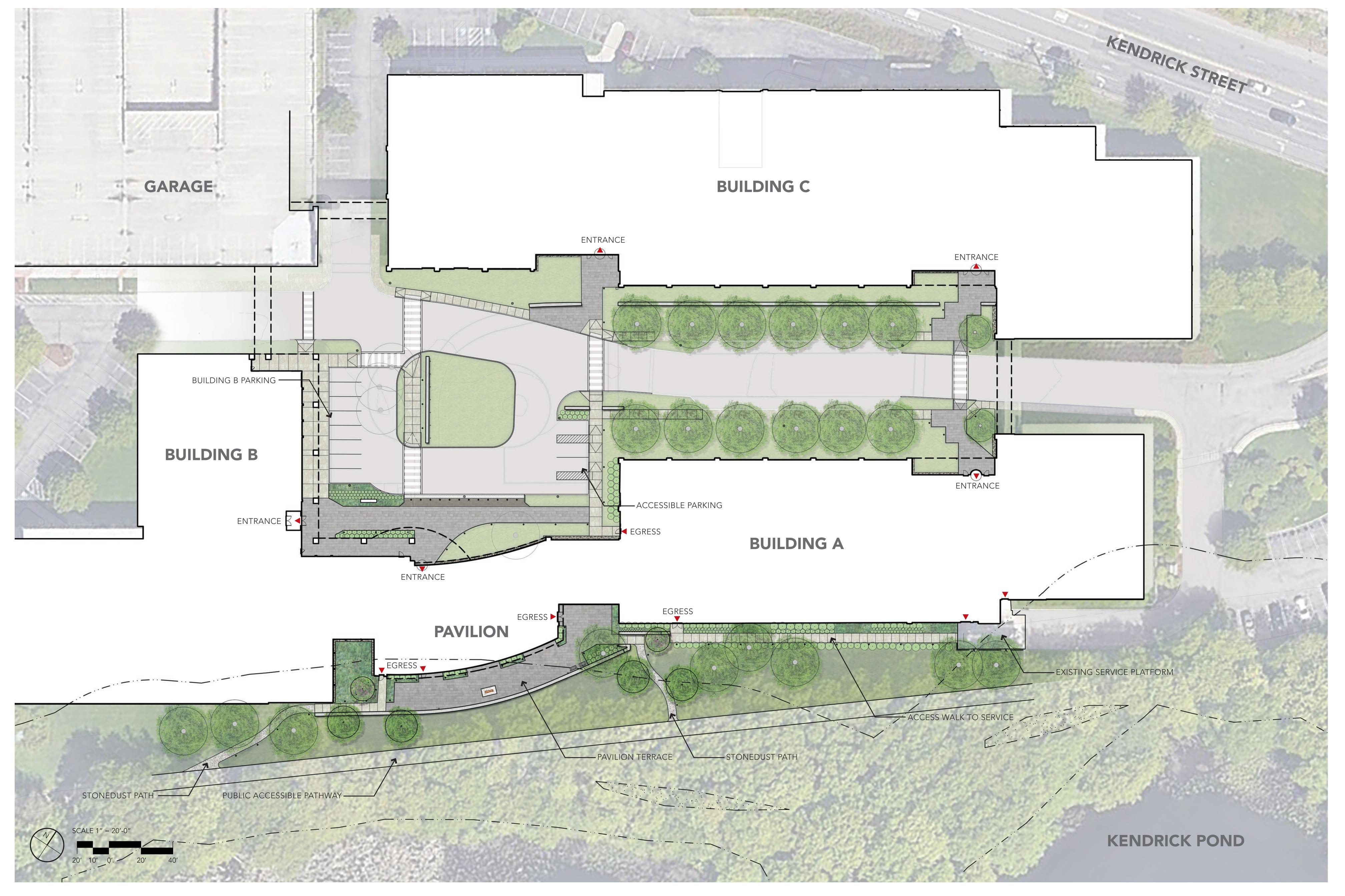
DESIGN REVIEW BOARD


Public Service Administration Building 500 Dedham Avenue Needham, MA 02492 Application and Report


I roperty	Location: 140 Kendrick Street		Date:	10/13/2020
Owner:	BP 140 Kendrick Street LLC c/o Bos	ston Properties L	imited Partners	ship
Address:	800 Boylston Street, Suite 1900	Boston	MA	02199
Telephone	Street 617-236-3392	City	State	Zip
Applicant	: BP 140 Kendrick Street LLC c/o Bos	ston Properties L	imited Partners	ship
Address:	800 Boylston Street, Suite 1900	Boston	MA	02199
Telephone	Street 617-236-3392	City	State	Zip
	VHR & Copley Wolff Design	Group		
	**Installer: VHB & Copley Wolff Design VHB Copley Wolff Design Group	101 Walnut S	Street, Watertown e Square, Suite 1:	MA 02472 315, Boston, MA(
Designer/ Address:		101 Walnut S		
Address:	VHB Copley Wolff Design Group	101 Walnut S 10 Post Offic City	e Square, Suite 1	315, Boston, MA (

Brief description of sign or project:

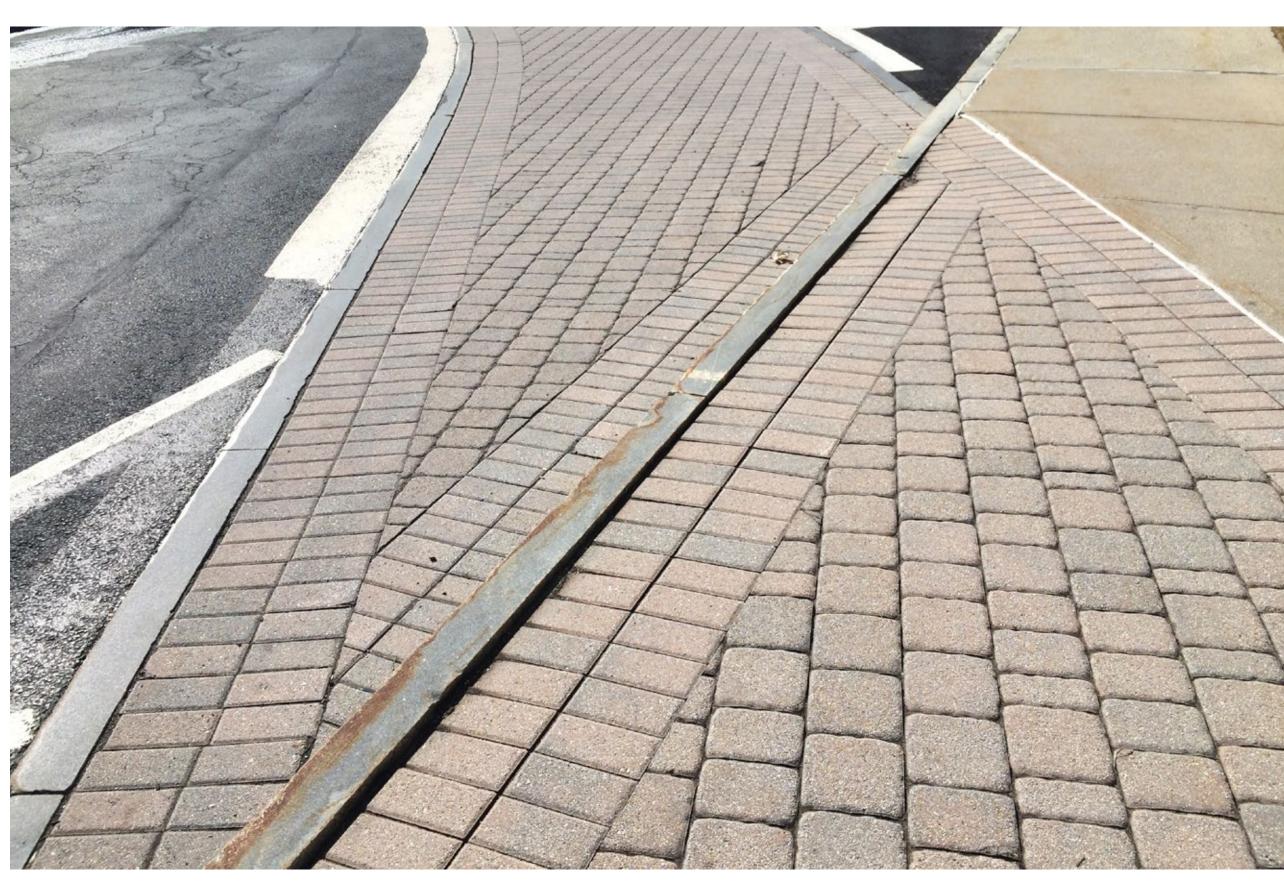
The 140 Kendrick Street Project was originally approved and constructed pursuant to Special permit/Site Plan Review issued by the Planning Board on June 15th, 1999. The current project consists of renovating the existing single tenant office space to allow multiple tenants to lease the buildings. Exterior improvements are limited to adding entrance locations to the buildings, patio improvements, and accessible parking & landscape improvements at the new entrance locations.

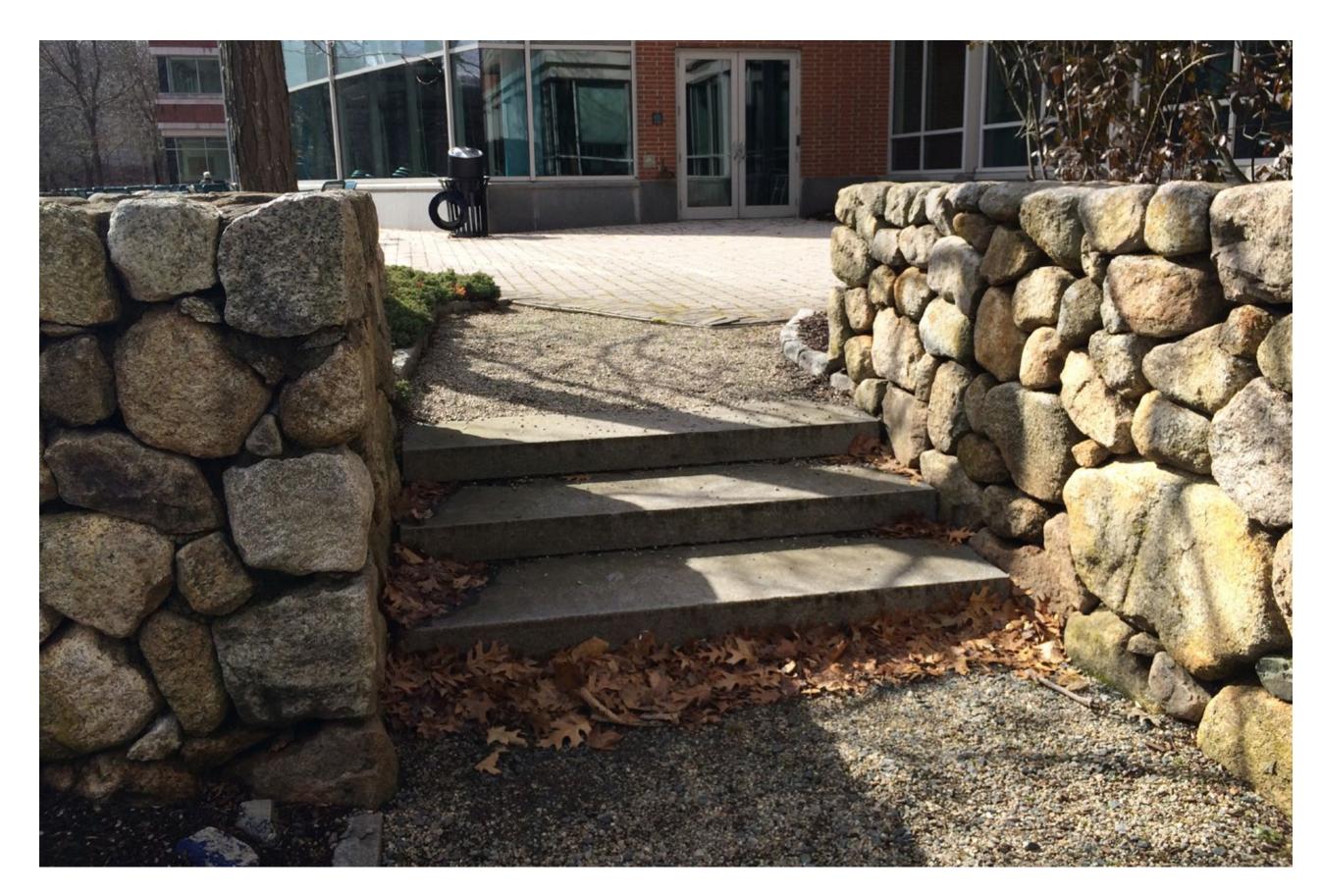

Please email completed application to elitchman@needhamma.gov

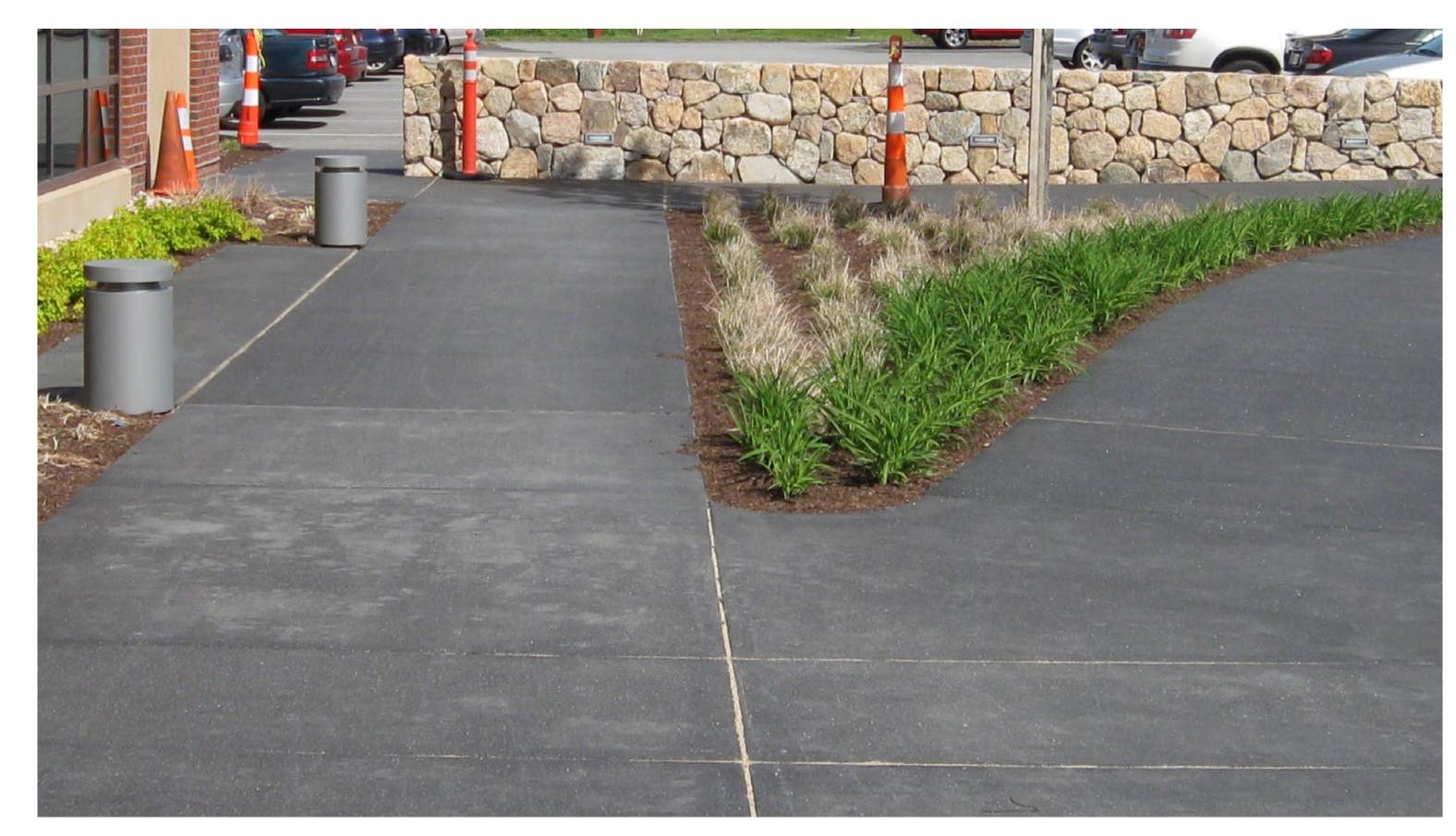
Needham, MA

OCTOBER 8, 2020

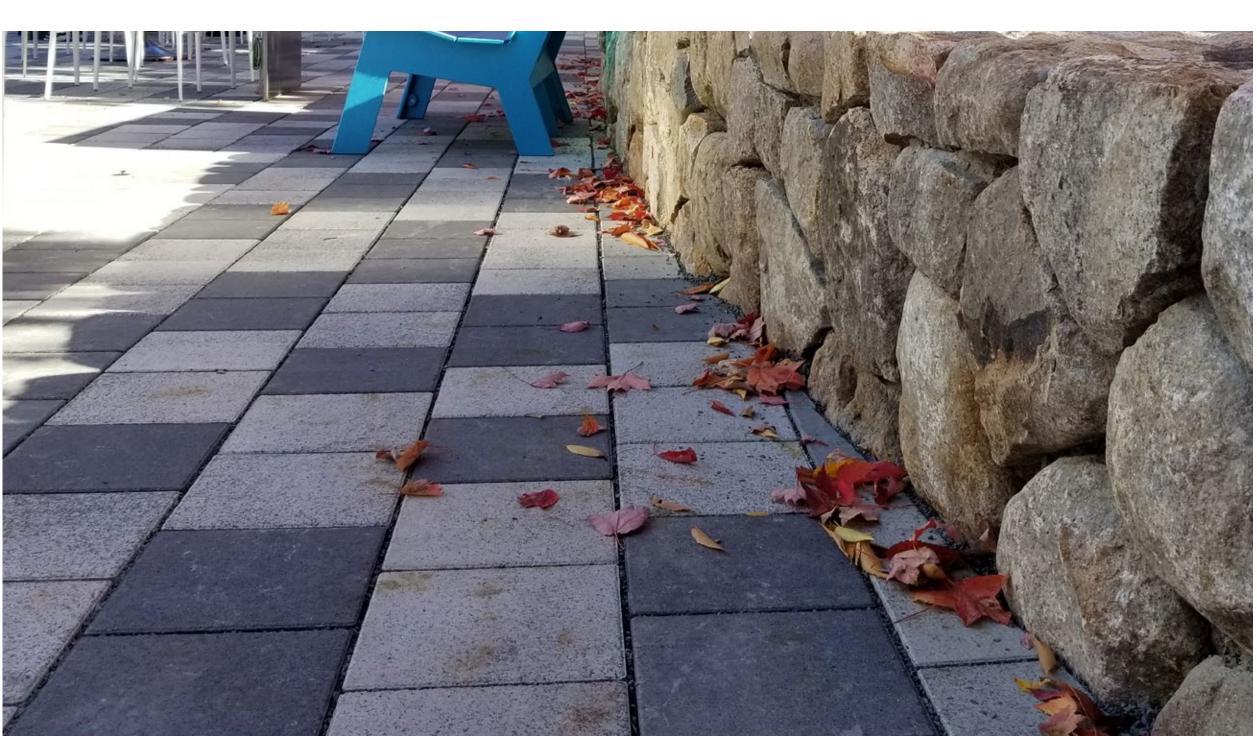

Needham, MA

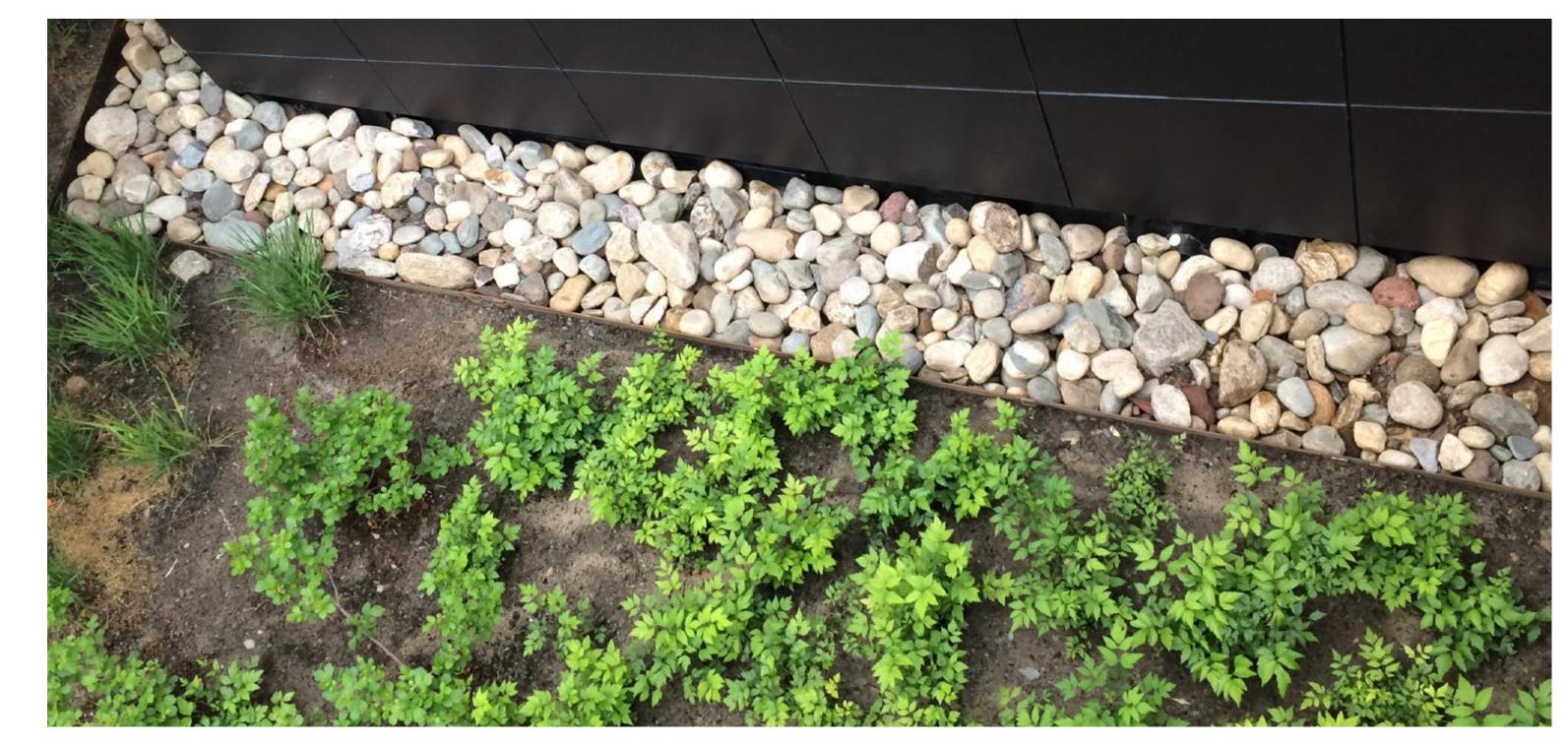


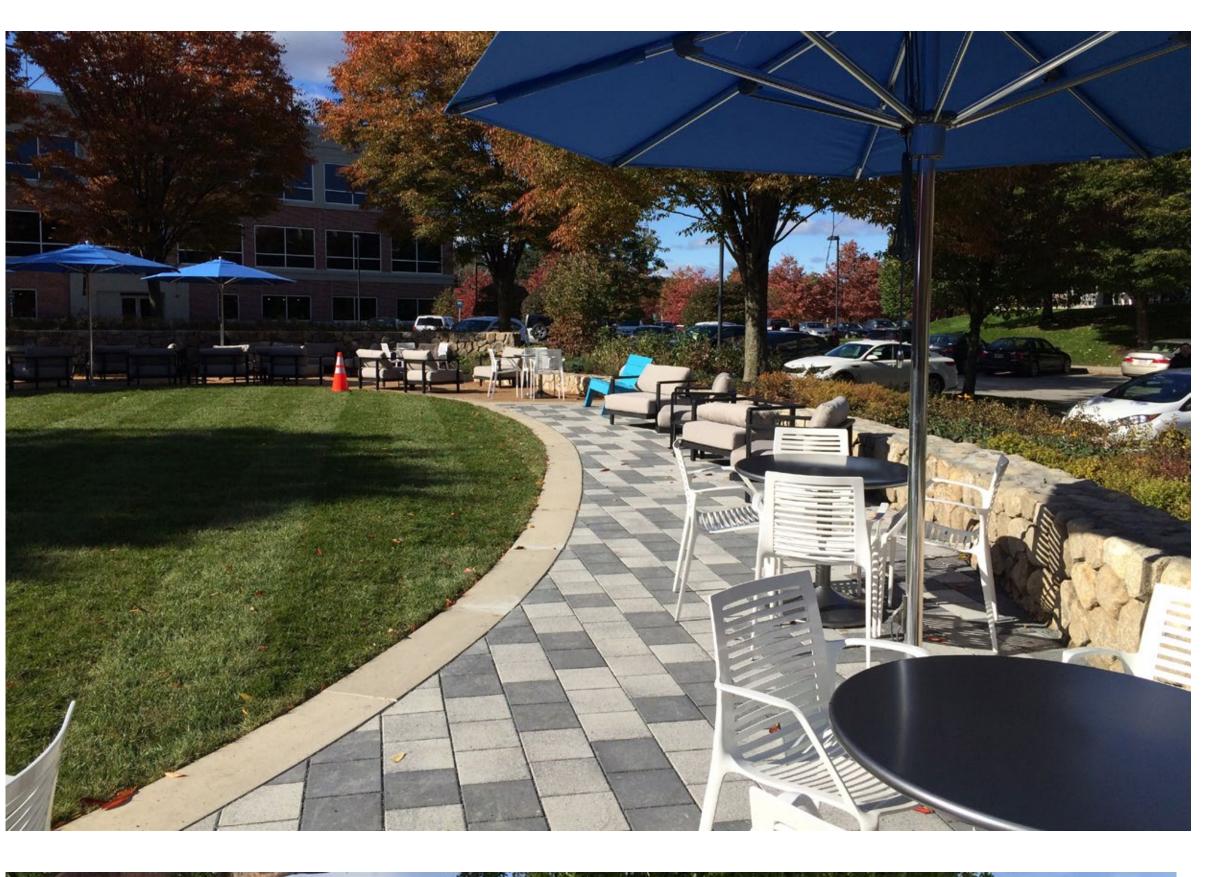


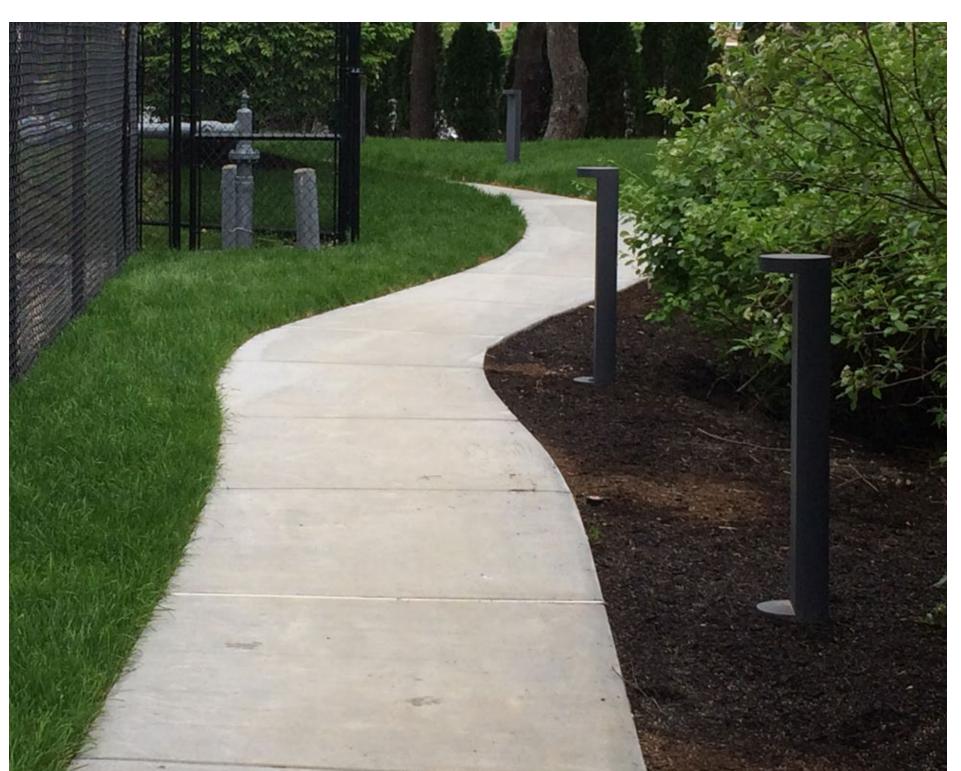


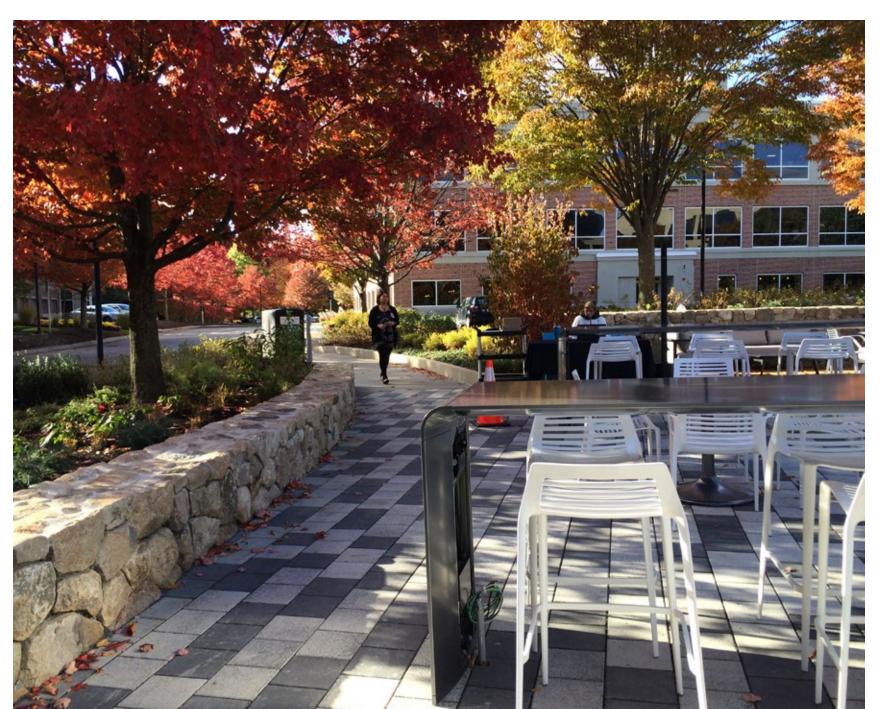
Boston Properties

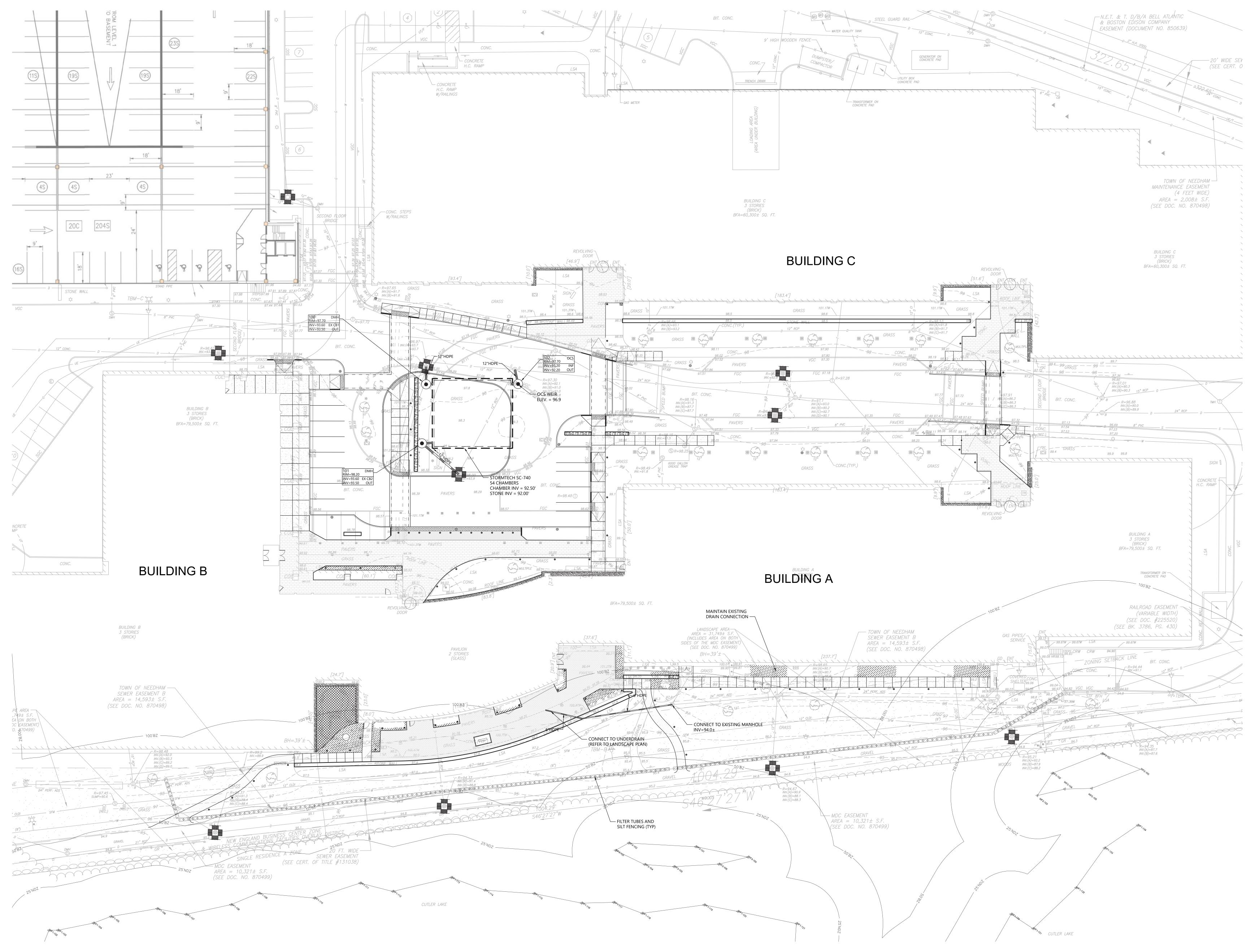


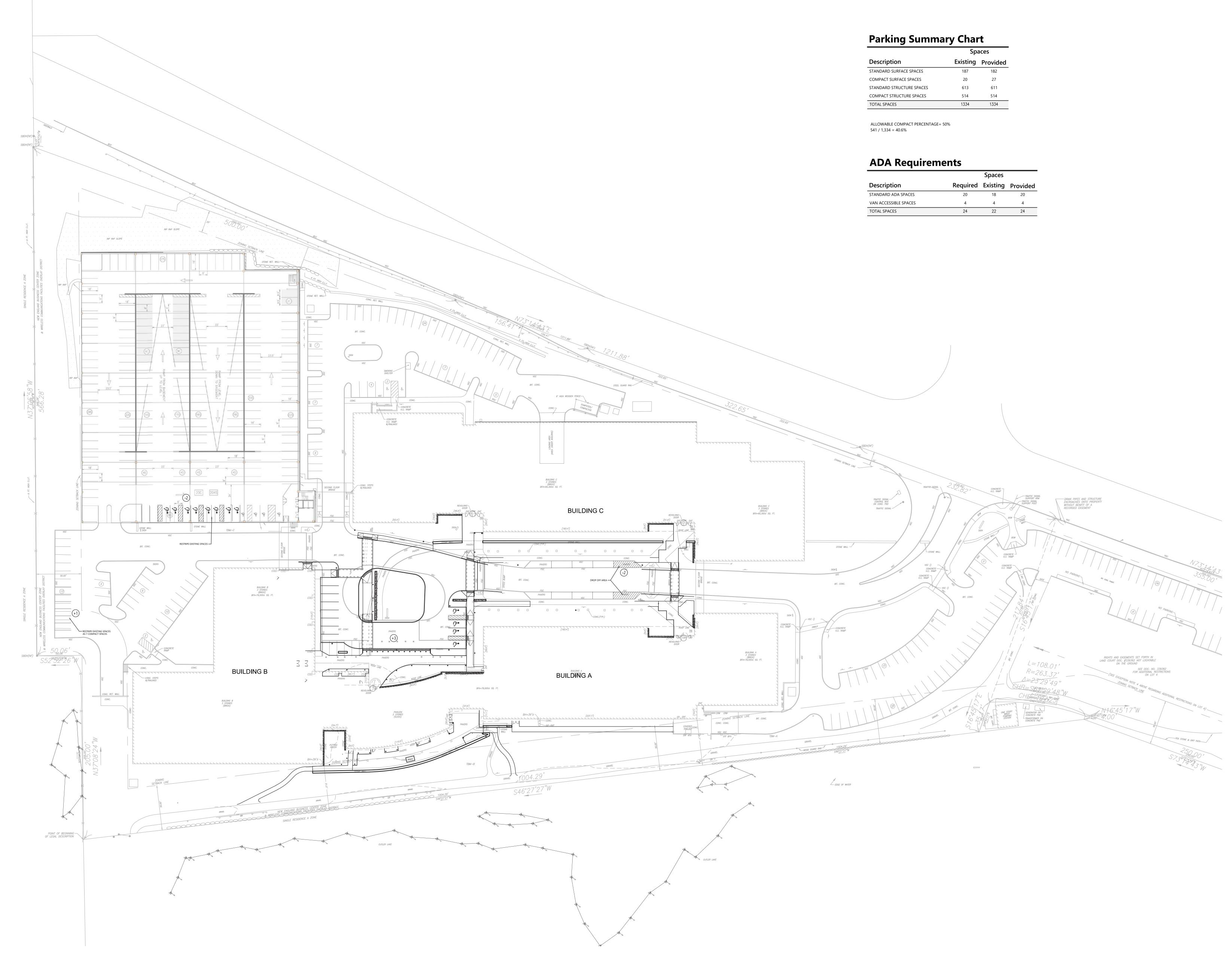












Needham, MA

Boston Properties

LANDSCAPE MATERIAL NOTES

- 1. THE CONTRACTOR SHALL REVIEW ALL DRAWINGS AND NOTES TO DETERMINE THE TOTAL SCOPE OF WORK AND ALL REQUIRED COORDINATION.
- 2. THE CONTRACTOR IS RESPONSIBLE FOR A THOROUGH SITE EXAMINATION TO SATISFY HIM OR HERSELF AS TO THE ACTUAL SITE CONDITIONS BEFORE SUBMISSION OF BIDS.
- CONTRACTOR SHALL VERIFY ALL EXISTING UTILITY LOCATIONS PRIOR TO EXCAVATION.
- 4. CONTRACTOR SHALL ARRANGE PRE-INSTALLATION CONFERENCES AT PROJECT SITE FOR STONE WALLS AND PAVEMENT WORK. ATTENDEES SHALL INCLUDE OWNER'S REPRESENTATIVE, LANDSCAPE ARCHITECT, GENERAL CONTRACTOR AND ALL SUB-CONTRACTORS DIRECTLY CONCERNED WITH THE WORK.
- 5. CONTRACTOR SHALL PREPARE SUBMITTALS TO THE LANDSCAPE ARCHITECT FOR ALL COMPONENTS OF THE FINISHED WORK, INCLUDING SHOP DRAWINGS, PRODUCT DATA, MATERIAL CERTIFICATIONS, MIX DESIGNS AND SAMPLES.
- 6. CONTRACTOR SHALL FURNISH AND INSTALL CONSTRUCTED SAMPLES (MOCK-UPS) DEMONSTRATING ALL COMPONENTS OF THE DESIGN, INCLUDING FINISHED EXPOSED EDGES AND SURFACES, COLORS AND JOINTING FOR REVIEW AND APPROVAL BY THE LANDSCAPE ARCHITECT PRIOR TO CONSTRUCTING FINAL WORK. MOCK-UPS MAY BE PART OF THE FINAL CONSTRUCTION. MOCK-UPS SHALL BE MAINTAINED AND PROTECTED THROUGHOUT THE DURATION OF THE PROJECT AND WILL SERVE AS PROJECT STANDARD. CONTRACTOR SHALL DEMOLISH AND RECONSTRUCT MOCK-UP UNTIL APPROVAL FROM LANDSCAPE ARCHITECT. MOCK-UPS SHALL INCLUDE: ONE FULL HEIGHT AND WIDTH BY 6' LONG STONE WALL SECTION AND ONE 6' X 6' PANEL OF CONCRETE PAVEMENT
- 7. THE DIMENSIONS OF PAVEMENT JOINTS AS SHOWN ON THE DRAWINGS ARE TO THE CENTER LINE OF EACH TYPE OF JOINT EXCEPT WHERE PAVEMENT MEETS A VERTICAL FACE; AT THIS LOCATION DIMENSIONS ARE TO THE VERTICAL FACE. THE DIMENSIONS SHOWN ON DRAWINGS SHOW DESIGN INTENT AND MUST BE FIELD VERIFIED PRIOR TO PREPARATION OF SHOP DRAWINGS. ALL ALIGNMENTS SHALL BE INSTALLED AS SHOWN.
- 8. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DOCUMENTING THE LOCATIONS OF ALL EXISTING SITE ELEMENTS TO BE RESET IN THEIR SAME HORIZONTAL LOCATION.
- 9. THE CONTRACTOR IS RESPONSIBLE FOR ALL DAMAGE INSIDE OR OUTSIDE OF LIMIT OF WORK LINE DUE TO HIS/HER CONSTRUCTION OPERATIONS.
- 10. STORAGE AREAS FOR THE GENERAL CONTRACTOR'S EQUIPMENT AND MATERIALS SHALL BE LOCATED WITHIN THE LIMITS OF WORK AS APPROVED BY THE LANDSCAPE ARCHITECT.
- 11. WHERE NEW PAVING MEETS EXISTING PAVING, MEET LINE AND GRADE OF EXISTING WITH NEW CONSTRUCTION. 12. AT ALL LOCATIONS WHERE EXISTING BITUMINOUS CONCRETE PAVEMENT ABUTS NEW CONSTRUCTION, THE EDGE
- OF THE EXISTING PAVEMENT SHALL BE SAW CUT TO A CLEAN SMOOTH EDGE. 13. ALL EXISTING LIGHT POLES AND LIGHT BOLLARDS SHALL BE SAVED FOR OWNER FOR RELOCATION
- 14. EXISTING LIGHTS AND FLAG POLES SHALL BE SAVED FOR OWNER

MATERIALS LEGEND

CONCRETE PAVING

UNIT PAVERS TYPE 1

PERMEABLE UNIT

UNIT PAVERS TYPE 3

STONE DUST PATH

STONE WALL

FIRE PIT IN TABLE

LIGHTING L01

EX-1 WALL WASH LIGHT - MP

EX-4 BOLLARD LIGHT - BEGA 99058

EX-5 TAPE LIGHT BELOW FIRE PIT -

EX-6 POLE LIGHT, MATCH EXISTING.

OPTIC ARTS FLEX AC 4

SEE CIVIL DRAWINGS

PLANTING

EX-3 TREE UPLIGHT - BK LIGHTING DELTA STAR

PAVERS TYPE 2

PAVER SCHEDULE - HANOVER

TYPE	PRODUCT	PERMEABILITY	SIZE (LXWXD)	COLOR	TOTAL SF
1	PREST PAVERS	NON-PERMEABLE	3.25" X 18" X 4"	STANDARD/TUDOR FINISH	395
2	PERMEABLE 12" X 18"	PERMEABLE	12" X 18" X 4"	STANDARD/TUDOR FINISH	3,350
3	PREST PAVERS	NON-PERMEABLE	12" X 36" X 4"	STANDARD/TUDOR FINISH	7,035

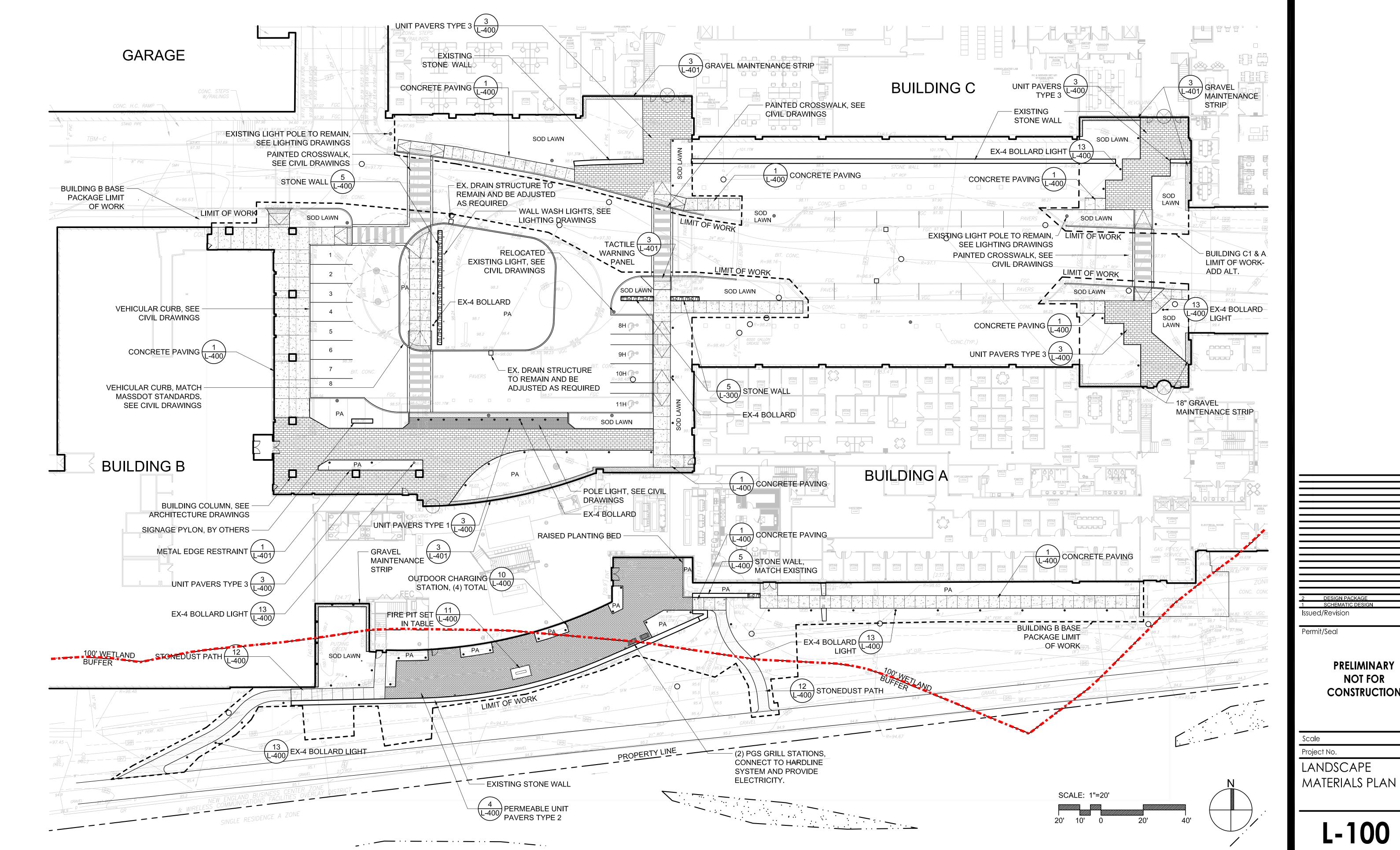
1. ALL CONCRETE PAVERS WILL BE SELECTED FROM THE RANGE OF STANDARD MANUFACTURER COLORS 2. ALL PAVERS SHALL BE GAUGED

Stantec Architecture and Engineering P.C. 311 Summer Street Boston, 02210-1723 Tel: (617) 234-3100 www.stantec.com

Consultant

Landscape Architects & Planners

Copley Wolff Landscape Architects 10 Post Office Square Boston, 02109 Tel: (617) 654-9000 www.copley-wolff.com


PRELIMINARY

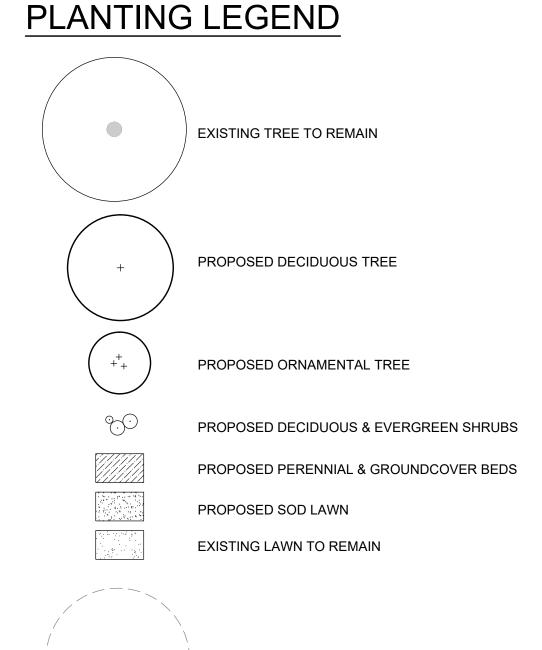
NOT FOR

CONSTRUCTION

L-100

1''=20'-0''

PLANTING AND SOIL NOTES


- 1. IF DISCREPANCIES EXIST BETWEEN THE NUMBER OF PLANTS DRAWN ON THE PLANTING PLAN AND THE NUMBER OF PLANTS IN THE PLANT LIST, THE PLANTING PLAN SHALL GOVERN.
- 2. ALL NEW PLANT MATERIAL SHALL CONFORM TO THE MINIMUM GUIDELINES ESTABLISHED FOR NURSERY STOCK PUBLISHED BY THE AMERICAN ASSOCIATION OF NURSERYMEN, INC. IN ADDITION, ALL NEW PLANT MATERIAL FOR THE PROJECT SHALL BE OF SPECIMEN QUALITY.
- 3. THE LANDSCAPE ARCHITECT SHALL ONLY REVIEW TREES THAT ARE IN THE GROUND AT THE NURSERY. NO PRE-DUG TREES WILL BE ACCEPTED. THEREFORE TIMING OF IN-GROUND REVIEWS MUST BE COORDINATED WITH EXPECTED INSTALLATION DATES.
- 4. ALL NEW PLANTS TO BE BALLED & BURLAPPED OR CONTAINER GROWN, UNLESS OTHERWISE NOTED ON THE PLANT LIST.
- 5. THE CONTRACTOR SHALL SUPPLY ALL NEW PLANT MATERIAL IN QUANTITIES
- SUFFICIENT TO COMPLETE THE PLANTING SHOWN ON THE DRAWINGS. ANY PROPOSED SUBSTITUTIONS OF PLANT SPECIES SHALL BE MADE WITH PLANTS OF EQUIVALENT OVERALL FORM, HEIGHT, BRANCHING HABIT, FLOWER, LEAF, COLOR, FRUIT AND CULTURE, AND ONLY AFTER WRITTEN APPROVAL OF THE LANDSCAPE ARCHITECT.
- 7. ALL NEW PLANTS SHALL BE TAGGED AND APPROVED BY THE LANDSCAPE ARCHITECT AT THE NURSERY PRIOR TO DIGGING OR DELIVERY TO THE SITE.
- 8. CONTRACTOR SHALL LOCATE AND VERIFY ALL EXISTING UTILITY LINES PRIOR TO
- PLANTING AND SHALL REPORT ANY CONFLICTS TO THE LANDSCAPE ARCHITECT 9. STAKE LOCATION OF ALL PROPOSED PLANTING FOR APPROVAL BY LANDSCAPE ARCHITECT PRIOR TO THE COMMENCEMENT OF PLANTING.
- 10. NEW SHRUBS AND GROUNDCOVER SHALL BEAR THE SAME RELATIONSHIP TO GRADE AS IT BORE TO PREVIOUS GRADE. TREES SHALL BE SET 3" HIGHER THAN PREVIOUS GRADE. NO TREES SHALL BE PLANTED BEFORE ACCEPTANCE OF
- ROUGH GRADING. 11. ALL PLANT BEDS TO RECEIVE UN-DYED, AGED AND SHREDDED BARK MULCH AS PER SPECIFICATIONS.
- 12. ALL EXISTING TREES TO REMAIN SHALL BE PROPERLY PROTECTED DURING CONSTRUCTION. PROTECTION TECHNIQUES SHALL BE REVIEWED AND APPROVED BY THE LANDSCAPE ARCHITECT.
- 13. PRUNE TREES IN ACCORDANCE WITH THE SPECIFICATIONS.
- 14. ALL PLANT MATERIAL SHALL BE MAINTAINED BY CONTRACTOR FOR ONE-FULL
- CALENDAR YEAR AND GUARANTEED FOR ONE-FULL CALENDAR YEAR. 15. CONFIRM ALL QUANTITIES AGAINST PLANTING PLANS, GRADING PLANS, AND SPECIFICATIONS, INCLUDING SITE DISTURBANCE OUTSIDE OF THE LIMIT OF
- GRADING NECESSITATED TO FACILITATE CONSTRUCTION.
- 16. WHERE SAND AND GRAVEL ARE SPECIFIED FOR A DRAINAGE LAYER, EXTEND DRAINAGE LAYER TO ASSOCIATED DRAIN LINES, DRAINAGE AREAS, OR DAYLIGHT. 17. WHERE ONE SOIL TYPE MEETS ANOTHER SOIL TYPE, FORM A 1:1 SLOPED
- BOUNDARY TRANSITION. 18. WHERE A SOIL PROFILE ENCROACHES WITHIN THE DRIP LINE OF EXISTING TREES,
- 19. ALL EXCAVATION AND PLACEMENT OF SOILS WITHIN THE DRIP LINE OF EXISTING TREES TO BE PERFORMED BY HAND.

CONSULT WITH LANDSCAPE ARCHITECT PRIOR TO COMMENCING EXCAVATION.

- 20. SCARIFY SUBGRADE AS SPECIFIED BEFORE PLACEMENT OF ANY PLANTING SOILS.
- 21. DO NOT PLACE OR HANDLE SOILS THAT ARE WET.
- 22. PROTECT ALL EXISTING SOILS AGAINST COMPACTION, CONTAMINATION WITH CONSTRUCTION MATERIALS, AND ALL DISTURBANCE.
- 23. CONTRACTOR IS RESPONSIBLE FOR ACTUAL SITE CONDITIONS, COORDINATION OF SOILS PLACEMENT, AND PLANTING SUBDRAINAGE.
- 24. DO NOT PLACE ANY PLANTING SOIL PRIOR TO INSPECTION BY LANDSCAPE
- 25. SAND BASED STRUCTURAL SOIL (SBSS) WHERE IDENTIFIED SHALL CONSIST OF A MINIMUM OF 1,000 C.F. OF SBSS FOR EACH TREE.

26. ALL EXISTING TREES ON SITE SHALL BE PRESERVED AND PROTECTED UNLESS

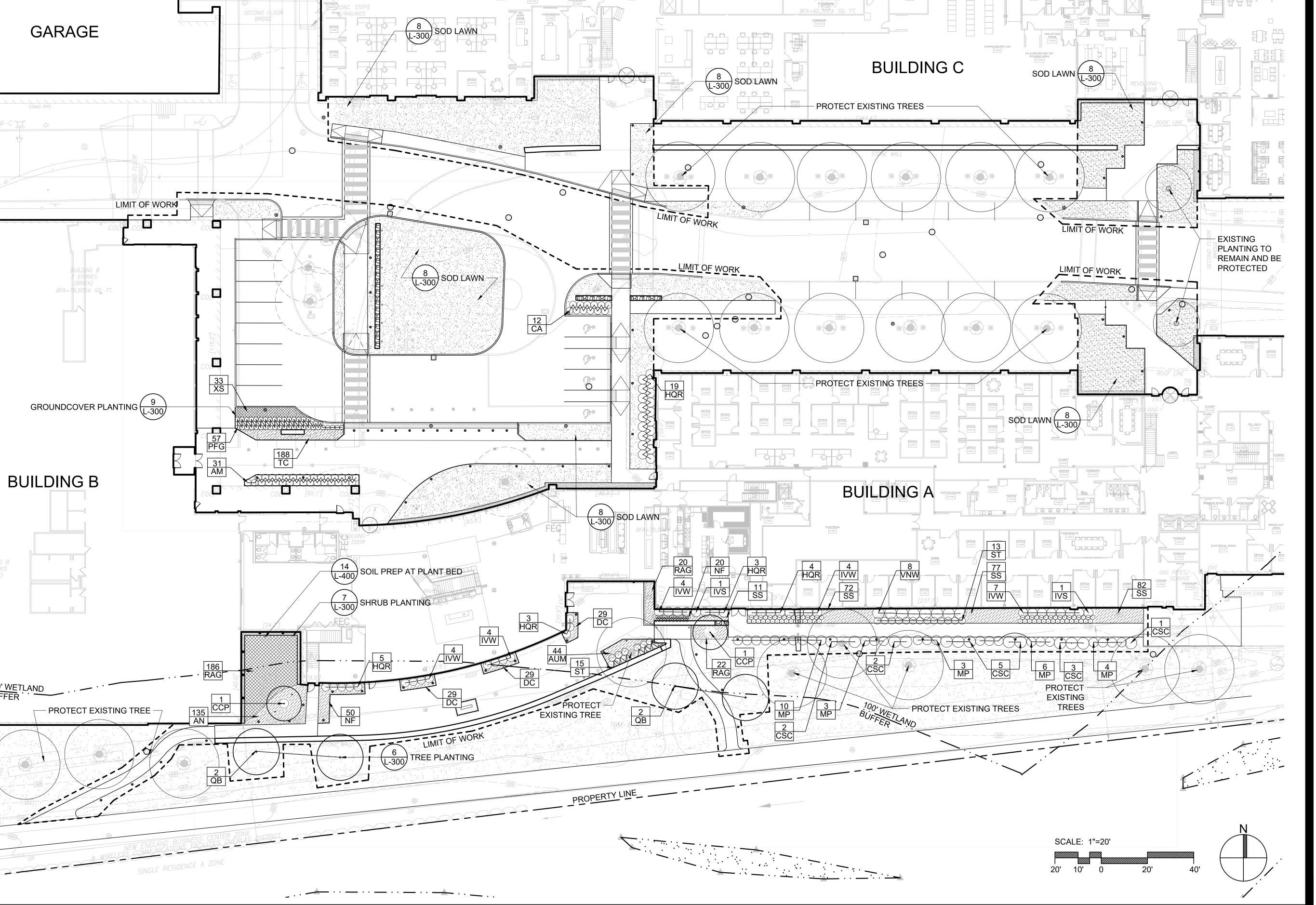
OTHERWISE NOTED.

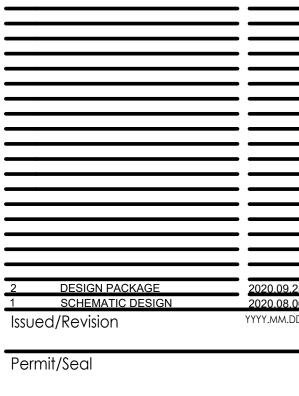
EXISTING TREE TO BE REMOVED

PLANTING SCHEDULE

Symbol	Qty.	Scientific Name	Common Name	Size	Comments
Deciduou	is Trees				•
QB	4	Quercus bicolor	Swamp White Oak	3 1/2"- 4" cal.	B&B, single straight central leader
Ornamer	ntal Trees				•
					B&B, multi-stem, , 3-4 main trunks
CCP	2	Cercis canadensis 'Forest Pansy'	Forest Pansy Eastern Redbud	12'-15' ht.	SPECIMEN QUALITY
Shrubs &	Groundco	overs			
AM	31	Aronia melanocarpa	Black Chokeberry	30"-36" ht.	36" O.C. spacing
AN	135	Aster novae-angliae	New England Aster	36"-42" ht.	18" O.C. spacing
AUM	44	Arctostaphylos uva-ursi 'Massachusetts'	Bearberry	6"-12" ht.	18" O.C. spacing
CA	12	Clethra alniolia	Sweet Pepperbush	36"-42" ht.	36" O.C. spacing
CSC	12	Cornus sericea 'Cardinal'	Cardinal Red-Osier Dogwood	4'-5' ht.	B&B, 5' O.C. spacing
DC	87	Deschampsia cespitosa	Tufted Hair Grass	24"-30" ht.	12" O.C. spacing
HQR	34	Hydrangea quercifolia 'Ruby Slippers'	Oakleaf Hydrangea	30"-36" ht.	48" O.C. spacing
IVW	23	<i>Ilex verticillata</i> 'Winter Red'	Winter Red Winterberry	3'-4' ht.	48" O.C. spacing
IVS	2	Ilex verticillata 'Southern Gentleman'	Southern Gentleman Winterberry	3'-4' ht.	48" O.C. spacing
MP	26	Myrica pennsylvanica	Bayberry	3'-4' ht.	48" O.C. spacing
NF	70	Nepeta faasenii	Catmint	12"-18" ht.	18" O.C. spacing
PFG	71	Potentilla fruticosa 'Goldfinger'	Shrubby Cinquefoil	24"-30" ht.	24" O.C. spacing
RAG	235	Rhus aromatica 'Gro-low'	Gro-low Sumac	24"-30" ht.	24" O.C. spacing
SS	242	Schizachyrium scoparium	Little Bluestem	18"-24" ht.	18" O.C. spacing
ST	28	Spiraea tomentosa	Steeplebush	30"-36" ht.	36" O.C. spacing
TC	188	Tiarella cordifolia	Foamflower	10"-12" ht.	12" O.C. spacing
VNW	8	Viburnum nudum 'Winterthur'	Smooth Witherod	3'-4' ht.	B&B, 6' O.C. spacing
XS	191	Xanthorhiza simplicissima	Yellowroot	18"-24" ht.	18" O.C. spacing

Stantec Architecture and Engineering P.C. 311 Summer Street Boston, 02210-1723 Tel: (617) 234-3100


www.stantec.com Consultant


Landscape Architects & Planners

10 Post Office Square Boston, 02109 Tel: (617) 654-9000 www.copley-wolff.com

Copley Wolff Landscape Architects

PRELIMINARY NOT FOR CONSTRUCTION

Project No. LANDSCAPE PLANTING PLAN

LANDSCAPE GRADING NOTES

- SEE CIVIL ENGINEERING PLANS FOR FINAL GRADING. 2. PITCH EVENLY BETWEEN SPOT GRADES. ALL PAVING AREAS MUST PITCH TO DRAIN AT MIN. PITCH OF 1/8" PER FOOT UNLESS OTHERWISE SHOWN. REPORT ANY DISCREPANCIES BETWEEN EXISTING AND PROPOSED SPOT GRADES THAT DO NOT PITCH ACCORDINGLY TO THE LANDSCAPE ARCHITECT BEFORE COMMENCING WORK.
- WHERE NEW PAVING MEETS EXISTING PAVING, MEET LINE AND GRADE OF EXISTING SMOOTHLY WITH NEW CONSTRUCTION. 4. EXCAVATION ADJACENT TO EXISTING AND PROPOSED

HAND. CONTRACTOR SHALL PROTECT ALL EXPOSED

UTILITIES. THE CONTRACTOR SHALL PROTECT EXISTING UTILITIES, EXISTING STRUCTURES, IMPROVEMENTS, APPURTENANCES AND VEGETATION TO REMAIN. THE CONTRACTOR SHALL REPAIR ANY DAMAGE INCURRED AT NO COST TO OWNER.

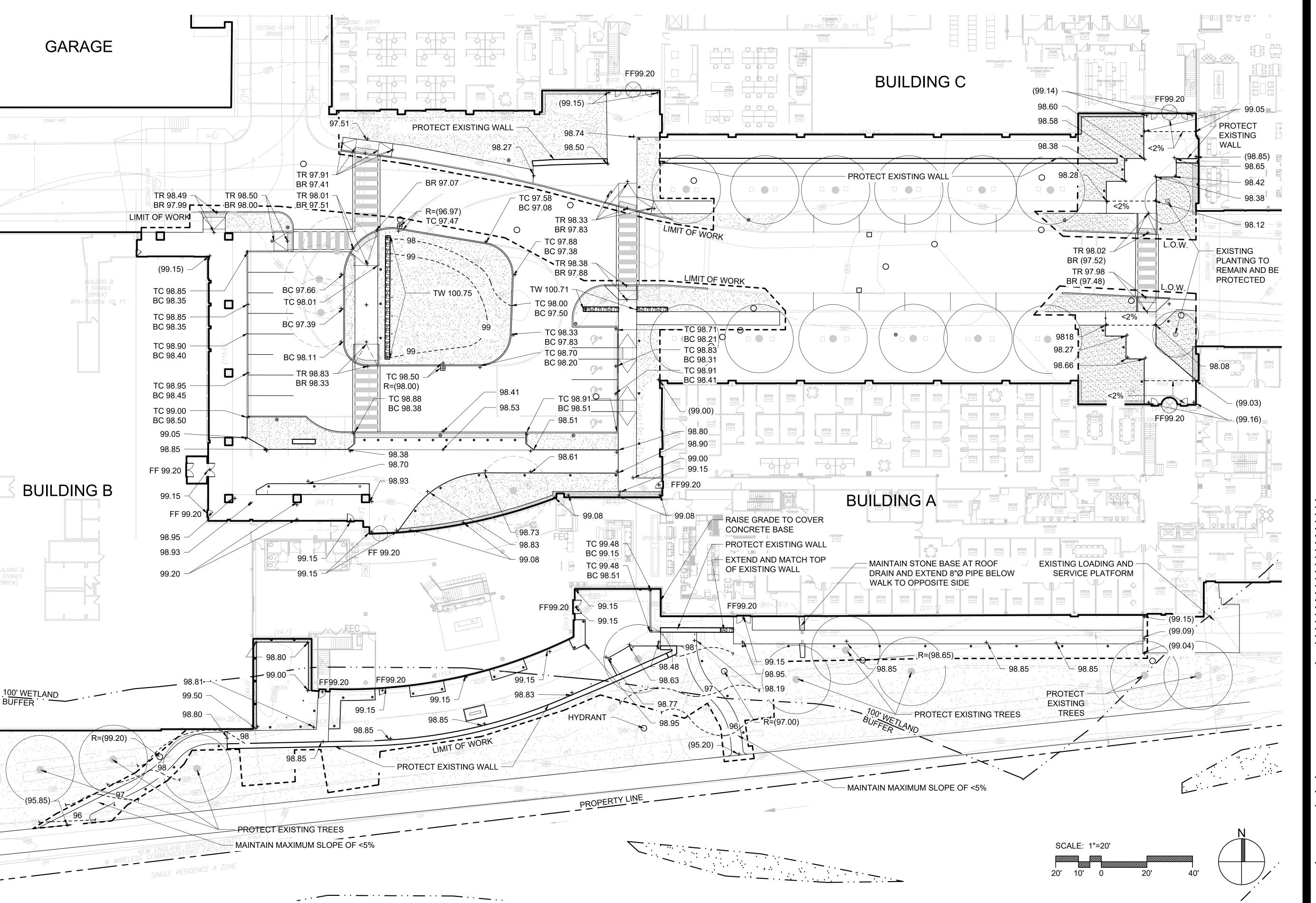
UTILITY LINES AND EXISTING TREES SHALL BE DONE BY

- 6. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIREMENTS OF PERMITS AND LICENSEES ISSUED BY
- THE FEDERAL, STATE AND LOCAL AGENCIES (SEE SPECS). 7. THE CONTRACTOR SHALL COORDINATE ALL SITE UTILITY IMPROVEMENTS WITH THE PROPER AUTHORITIES.
- 9. ALL MANHOLES, DRAINAGE STRUCTURES, STEAM MANHOLES, ELECTRIC MANHOLE FRAMES AND COVERS WITHIN THE PROJECT WORK AREA SHALL BE ADJUSTED TO
- 10. SEE CIVIL ENGINEER'S DRAWINGS FOR GRADING IN VEHICULAR AREAS, SIDEWALKS, AND ACCESSIBLE CURB RAMPS.

GRADING LEGEND

EXISTING SPOT GRADE + (XX.XX) (SEE CIVIL/SURVEY DRAWINGS)

+ 15.92 PROPOSED SPOT GRADE

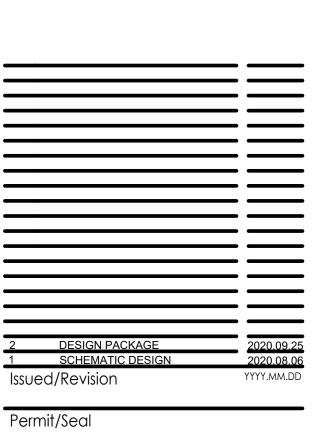

FFE FINISH FLOOR ELEVATION TC / BC TOP/BOTTOM OF CURB

FLUSH CURB FC TOP/BOTTOM OF WALL TW/BW

HIGH POINT

LOW POINT

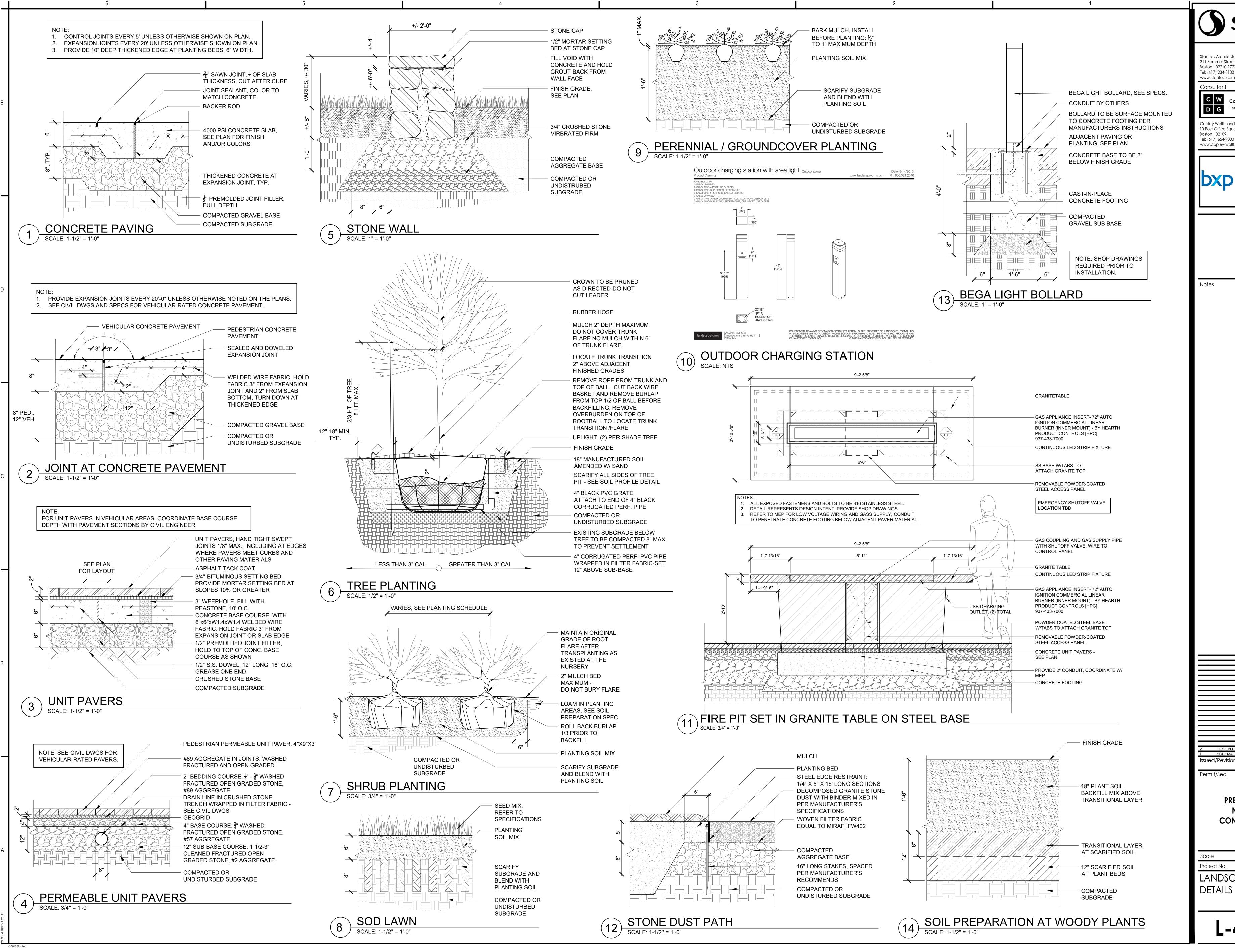
8. MAINTAIN A MAXIMUM OF 1.8% CROSS SLOPE ON ALL PAVED SURFACES, UNLESS OTHERWISE NOTED. FINISH GRADES UNLESS OTHERWISE NOTED.


Stantec Architecture and Engineering P.C. 311 Summer Street Boston, 02210-1723 Tel: (617) 234-3100

www.stantec.com Consultant

> Copley Wolff Design Group Landscape Architects & Planners

Copley Wolff Landscape Architects 10 Post Office Square Boston, 02109 Tel: (617) 654-9000 www.copley-wolff.com



PRELIMINARY NOT FOR CONSTRUCTION

1''=20'-0''

Project No. LANDSCAPE GRADING PLAN

Stantec

Stantec Architecture and Engineering P.C 311 Summer Street Boston, 02210-1723

> **Copley Wolff Design Group** Landscape Architects & Planner

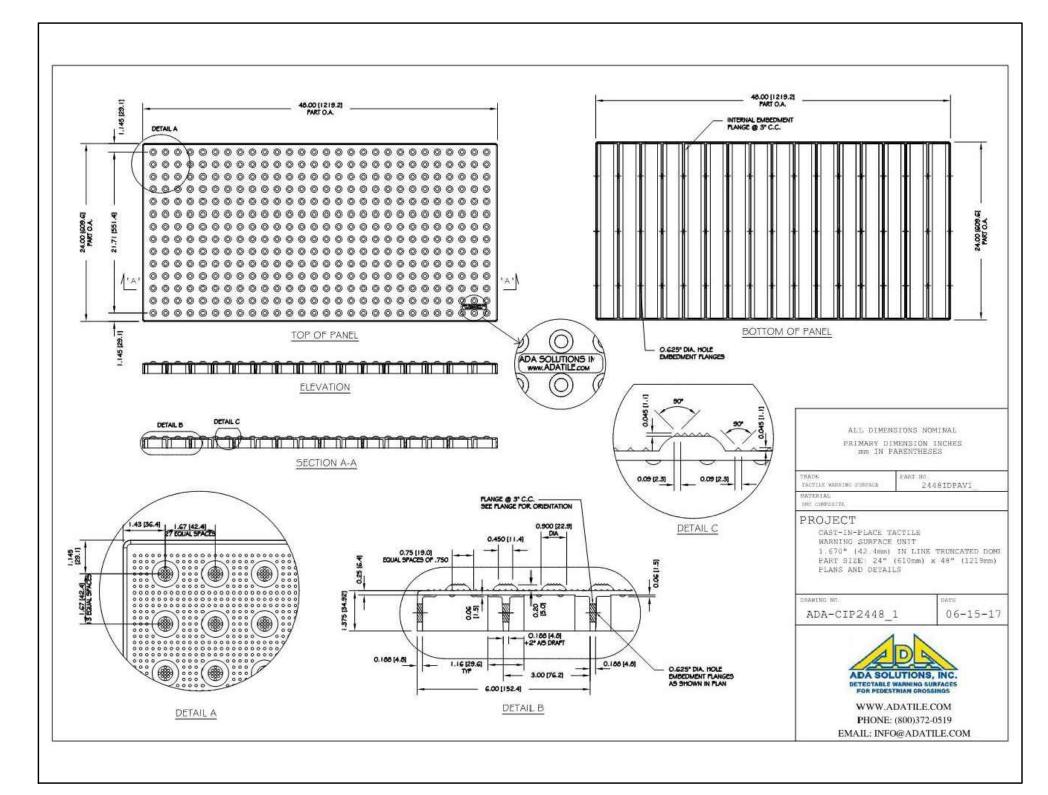
Copley Wolff Landscape Architects 10 Post Office Square Boston, 02109 Tel: (617) 654-9000 www.copley-wolff.com

Issued/Revision

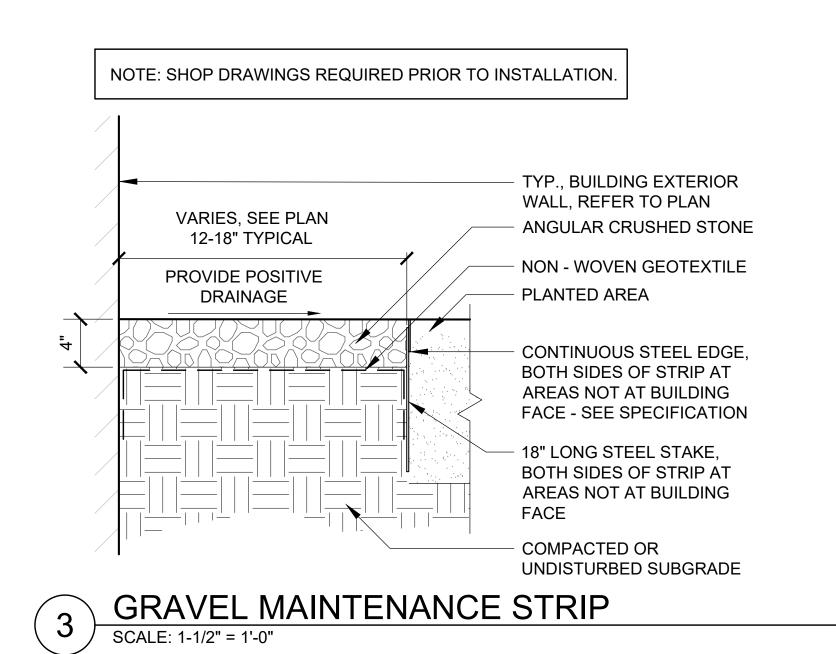
PRELIMINARY NOT FOR CONSTRUCTION

Project No. LANDSCAPE

Stantec Architecture and Engineering P.C. 311 Summer Street Boston, 02210-1723 Tel: (617) 234-3100 www.stantec.com



Copley Wolff Landscape Architects 10 Post Office Square Boston, 02109 Tel: (617) 654-9000 www.copley-wolff.com



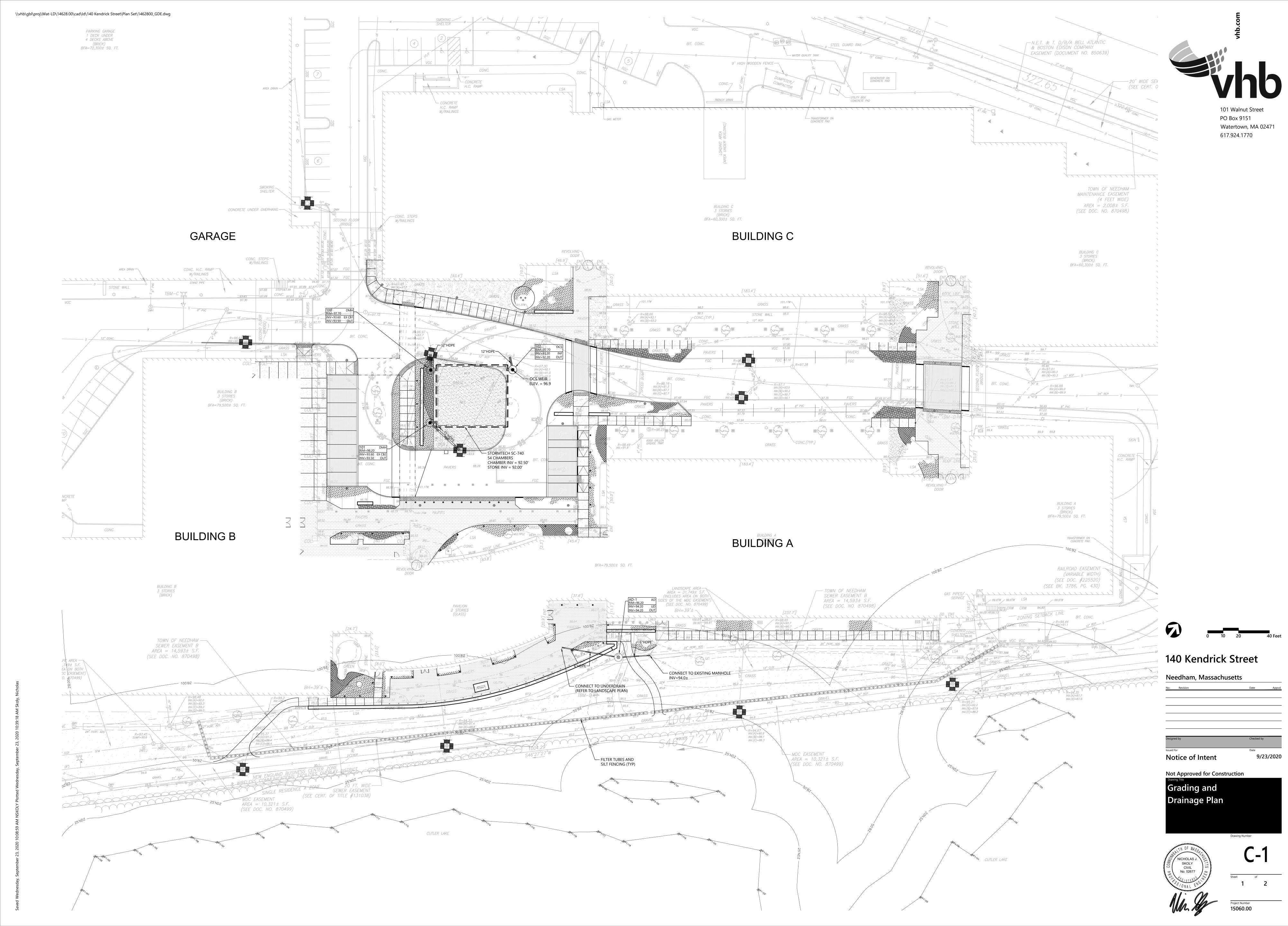
Note:

1 METAL EDGE RESTRAINT - SEE SPECIFICATION SCALE: NTS

2 C.I.P. TACTILE WARNING PANEL
SCALE: NTS

2 DESIGN PACKAGE 202
1 SCHEMATIC DESIGN 202
Issued/Revision YYYY

Permit/Seal


PRELIMINARY

NOT FOR CONSTRUCTION

Project No.

LANDSCAPE

DETAILS

Drain Manhole (DMH)

Source: VHB

MATERIAL LOCATION

INITIAL FILL: FILL MATERIAL FOR LAYER 'C'

STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER, NOTE THAT PAVEMENT

SUBBASE MAY BE A PART OF THE 'C' LAYEF

EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.

FROM THE SUBGRADE UP TO THE FOOT (BOTTOM)
OF THE CHAMBER.

WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.

PERIMETER STONE

EXCAVATION WALL

(CAN BE SLOPED OR VERTICAL)

EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.

AROUND CLEAN, CRUSHED, ANGULAR STONE IN A & B LAYERS.

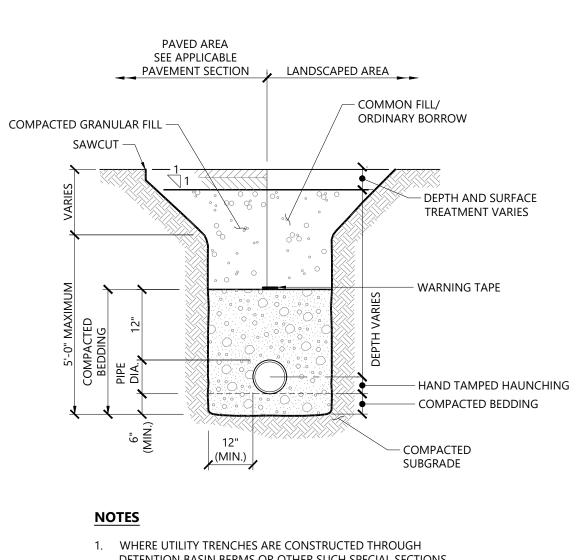
ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL

1. SC-740 CHAMBERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS", OR ASTM F2922 "STANDARD SPECIFICATION FOR POLYETHYLENE (PE) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".

2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION

3. "ACCEPTABLE FILL MATERIALS" TABLE ABOVE PROVIDES MATERIAL LOCATIONS, DESCRIPTIONS, GRADATIONS, AND COMPACTION REQUIREMENTS FOR FOUNDATION, EMBEDMENT, AND FILL

6. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL


5. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.

4. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE

MAY BE PART OF THE 'D' LAYER

FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS

FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE

Source: VHB

COMPACTION / DENSITY

REQUIREMENT

PREPARE PER SITE DESIGN ENGINEER'S PLANS.

BEGIN COMPACTIONS AFTER 12" (300 mm) OF

MATERIAL OVER THE CHAMBERS IS REACHED.
COMPACT ADDITIONAL LAYERS IN 6" (150 mm) MAX

LIFTS TO A MIN. 95% PROCTOR DENSITY FOR
WELL GRADED MATERIAL AND 95% RELATIVE
DENSITY FOR PROCESSED AGGREGATE
MATERIALS, ROLLER GROSS VEHICLE WEIGHT

NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).

NO COMPACTION REQUIRED.

PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ²³

→ 12" (300 mm) TYP

DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 6" (150 mm) MIN

PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.

Utility Trench

N.T.S.

AASHTO MATERIAL

CLASSIFICATIONS

AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89,

3, 357, 4, 467, 5, 56, 57

3, 357, 4, 467, 5, 56, 57

PAVEMENT LAYER (DESIGNED BY SITE DESIGN ENGINEER)

--- 51" (1295 mm) ----

1/16 LD_115

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER

ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.

RANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES. <35

FINES OR PROCESSED AGGREGATE.

MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU

CLEAN, CRUSHED, ANGULAR STONE

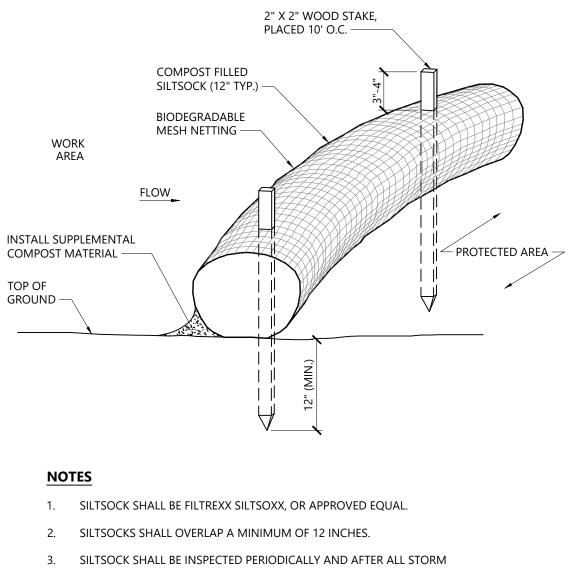
CLEAN, CRUSHED, ANGULAR STONE

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE."

ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION

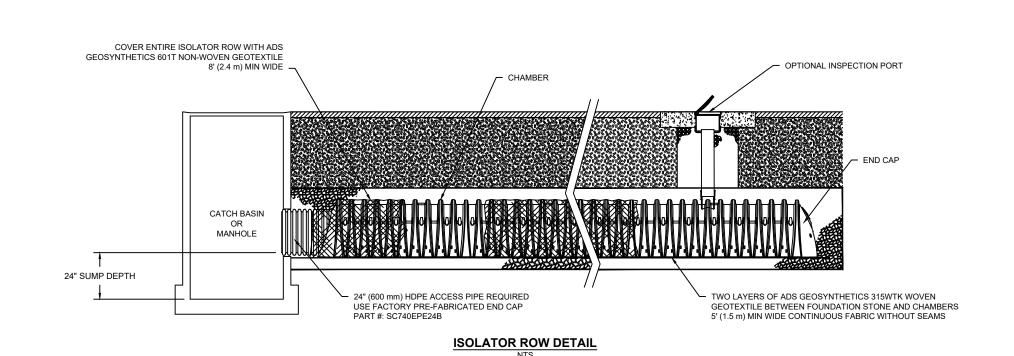

DETENTION BASIN BERMS OR OTHER SUCH SPECIAL SECTIONS, PLACE TRENCH BACKFILL WITH MATERIALS SIMILAR TO THE SPECIAL SECTION REQUIREMENTS. 2. USE METALLIC TRACING/WARNING TAPE OVER ALL PIPES.

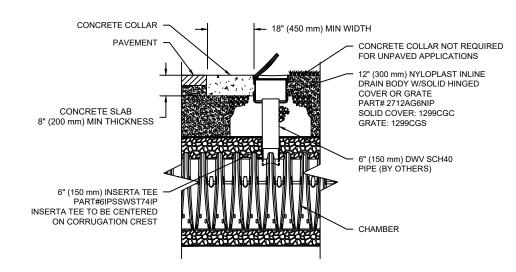
LD_300

SHEET

1 OF 1

		(MAX.)
1½" X 1½" X 4' WOOD OR APPROVED EQUAL	STAKE	
SILT FENCE	_	
WORK AREA		PROTECTED AREA
TOP OF GROUND		
4" EMBEDMENT (MIN.)		
PLACE 4" OF FABRIC ALONG TRENCH AWAY FROM PROTECTED AREA BACKFILL AND COMPACT	1' (MIN.)	STAPLE B
		ASTAPLE
		WOOD STAKE JOINT DETAIL

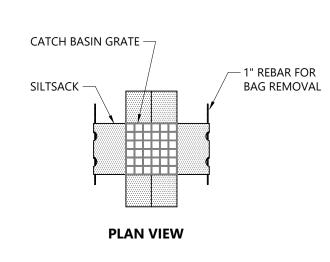


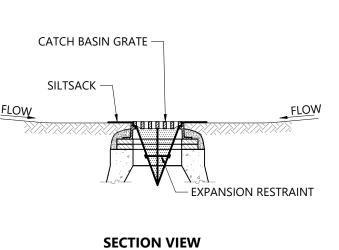

- EVENTS, AND REPAIR OR REPLACEMENT SHALL BE PERFORMED PROMPTLY
- 4. COMPOST MATERIAL SHALL BE DISPERSED ON SITE, AS DETERMINED BY THE

AS NEEDED.

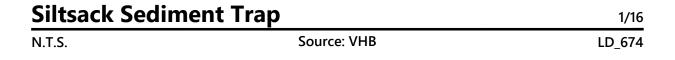
5. IF NON BIODEGRADABLE NETTING IS USED THE NETTING SHALL BE COLLECTED AND DISPOSED OF OFFSITE.

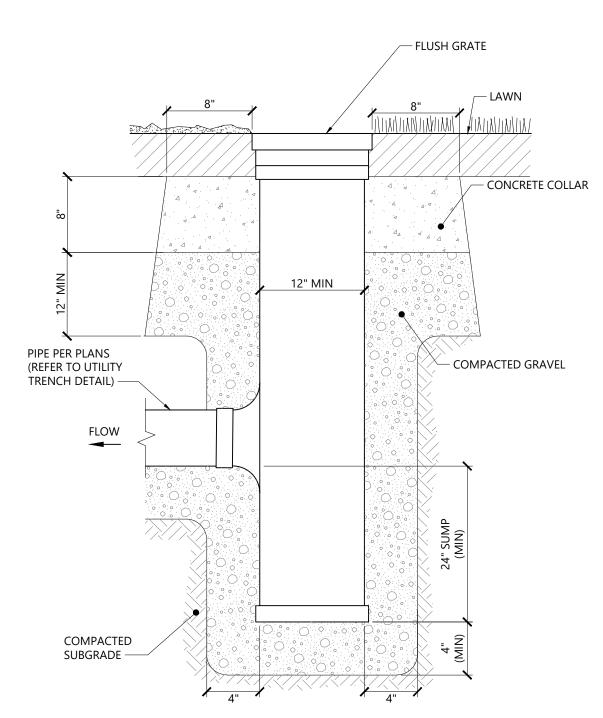
Cilt Eanca Pari	wi o w	4.44	Ciltanala Erro	sion Control Parrior		
Silt Fence Barrier		1/16	Siltsock - Erosion Control Barrier		1/	
N.T.S.	Source: VHB	LD_650	N.T.S.	Source: VHB	LD_658	


Isolator Row Profile Source: StormTech


SC-740 6" INSPECTION PORT DETAIL

1. LANDSCAPE DRAINS SHALL BE NYLOPLAST 12" DRAIN BASIN, OR APPROVED EQUAL.


Area Drain (AD) N.T.S. Source: VHB LD_197


 PEDESTRIAN PERMEABLE UNIT PAVER, 4"X9"X3" NOTE: SEE CIVIL DWGS FOR - #89 AGGREGATE IN JOINTS, WASHED VEHICULAR-RATED PAVERS. FRACTURED AND OPEN GRADED 2" BEDDING COURSE: }" - }" WASHED FRACTURED OPEN GRADED STONE, #89 AGGREGATE - DRAIN LINE IN CRUSHED STONE TRENCH WRAPPED IN FILTER FABRIC -SEE CIVIL DWGS " 4" BASE COURSE: T WASHED FRACTURED OPEN GRADED STONE, #57 AGGREGATE - 12" SUB BASE COURSE; 1 1/2-3" CLEANED FRACTURED OPEN GRADED STONE, #2 AGGREGATE - COMPACTED OR UNDISTURBED SUBGRADE 4) PERMEABLE UNIT PAVERS
SCALE: 3/4" = 1'-0"

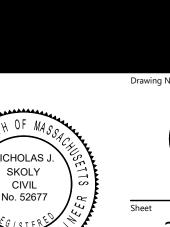
- 1. INSTALL SILTSACK IN ALL CATCH BASINS WHERE INDICATED ON THE PLAN BEFORE COMMENCING WORK OR IN PAVED AREAS AFTER BINDER COURSE IS PLACED AND HAY BALES HAVE BEEN REMOVED.
- 2. GRATE TO BE PLACED OVER SILTSACK.
- 3. SILTSACK SHALL BE INSPECTED PERIODICALLY AND AFTER ALL STORM EVENTS AND CLEANING OR REPLACEMENT SHALL BE PERFORMED PROMPTLY AS NEEDED. MAINTAIN UNTIL UPSTREAM AREAS HAVE BEEN PERMANENTLY STABILIZED

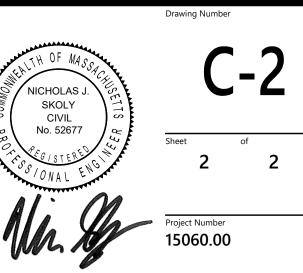
2. GRATES SHALL BE NYLOPLAST, 12"FLUSH GRATE OR APPROVED EQUAL AS SHOWN ON PLANS.

140 Kendrick Street

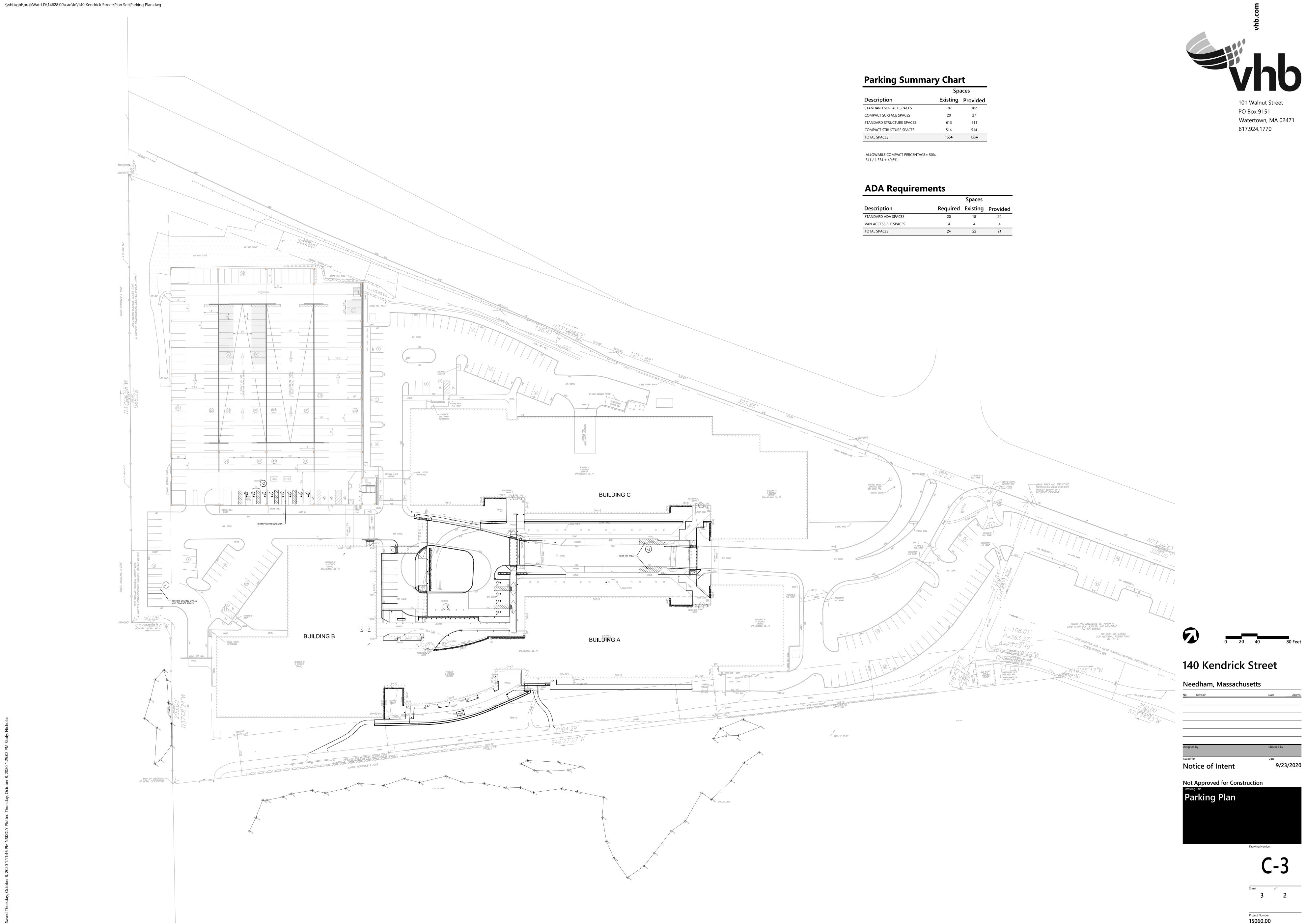
Needham, Massachusetts 9/23/2020 **Notice of Intent**

101 Walnut Street


Watertown, MA 02471


PO Box 9151

617.924.1770


Not Approved for Construction

Site Details

Watertown, MA 02471

To: Anthony L. Del Gaizo
Town Engineer
Public Services Administration
Building
500 Dedham Avenue
Needham, MA 02492

Date: September 23, 2020

Memorandum

Project #: 15060.00

From: Nicholas Skoly, PE Re: 140 Kendrick Stormwater Analysis

On behalf of Boston Properties, Vanasse Hangen Brustlin, Inc. (VHB is pleased to submit the following memorandum to document the adherence to the Town of Needham Stormwater Regulations (Project). The proposed stormwater management infrastructure includes best management practices (BMP's) for maintaining stormwater runoff rates has been developed in compliance with the Massachusetts Stormwater Management Standards and the Town of Needham Requirements for On-Site Drainage (Stormwater management), as applicable.

A HydroCAD model, using TR-20 methodology, was developed to evaluate the site's existing and proposed stormwater runoff response for the 2-,10-, 25-, and 100-year storm events. As summarized in the following sections, the analysis for these storm events indicates that there will be no increase in peak discharge rates or runoff volumes resulting from the additional impervious area.

Project Description

Boston Properties is proposing to renovate a portion of their existing building at 140 Kendrick Street. As part of that renovation, they are proposing to improve the hardscape and landscape areas surrounding the building. The exterior improvements will be limited to reworking parking spaces near the main entry, improving the vehicular drop off area and pedestrian circulation, and improving an outdoor patio.

Stormwater Approach

The exterior improvements are limited to the front entrance portion of the site located on the North side of the existing building and the back patio on the South side of the building. The improved drop-off area at the front entrance will generally maintain the same drainage patterns but will be improved with a subsurface detention system. Within the subcatchment, (approximately 60,675 sf) there is an increase in impervious area of approximately 1,620 sf. The improved patio area will generally maintain the same drainage patterns but will be improved with permeable pavers. Within the subcatchment (approximately 26,050 sf) there is a decrease in impervious area of approximately 960 sf.

The stormwater runoff in the proposed condition will be collected via the existing deep sump and hooded catch basins and routed to a subsurface detention basin installed adjacent to the catch basins via a pipe installed below the existing outlet of the catch basin. Once the detention basin reaches its capacity the stormwater will drain through the existing closed piping system and maintain the existing drainage patterns. The subsurface detention basin and permeable pavers provide the required volume for 1" over the impervious area. Under this requirement the design is required to store 3,575cf of runoff and the design provides stores 3,977cf. This storage assumes an infiltration rate of 1.02 which is consistent with the original stormwater design for the site. The Hydrologic model analyzes the subcatchment to the existing catch basin which encompasses all of the exterior work proposed.

Ref: 15060.00 September 23, 2020

Page 2

Hydrologic Analysis

The rainfall runoff response of the Site under existing and proposed conditions was evaluated for storm events with recurrence intervals of 2-, 5-, 10-, 25-, and 100-years (as shown in the Site Construction permit Regulations.). Runoff coefficients for the pre- and post-development conditions, were determined using NRCS Technical Release 55 (TR-55) methodology as provided in HydroCAD. The HydroCAD model is based on NRCS Technical Release 20 (TR-20) Model for Project Formulation Hydrology. Printouts of the HydroCAD analyses are attached. Tables 1 below presents a summary of the existing and proposed conditions peak flow rates.

Table 1
Peak Discharge Rates (cubic feet per second)

Design Point	2-year	10-year	25-year	100-
				year
Design Point 1: Closed Drainage System				
Existing	2.26	5.06	6.90	9.85
Proposed	0.73	1.84	4.88	9.63
Design Point 2 Closed Drainage System				
Existing	0.02	0.5	1.0	1.90
Proposed	0.02	0.44	0.9	1.66

Table 2 Runoff Volumes (cubic feet)

Design Poin	it	2-year	10-year	25-year	100- year
Design Poin Closed Drain System					
	Existing	5,981	13,292	18,288	26,452
I	Proposed	1,987	8,158	13,001	20,981
Design Poin Closed Drain System					
-)	Existing	339	1,703	2,907	5,164
1	Proposed	293	1,474	2,545	4,681

Ref: 15060.00 September 23, 2020

Page 3

Massachusetts Department of Environmental Protection (DEP) Stormwater Management Standards

Standard 1: No New Untreated Discharges or Erosion to Wetlands

The Project has been designed to comply with Standard 1.

The Best Management Practices (BMPs) included in the proposed stormwater management system have been designed in accordance with the Massachusetts Stormwater Handbook. Supporting information and computations demonstrating that no new untreated discharges will result from the Project are presented through compliance with Standards 4 through 6.

There are no new untreated discharges that will result from the project. The project is using existing infrastructure and supplementing it with additional stormwater BMPs.

Standard 2: Peak Rate Attenuation

The Project has been designed to fully comply with Standard 2.

This project has been designed to reduce the peak attenuation rate for the 2-yr, 10-yr, 25-yr and 100-yr storm, as shown in the tables above.

Standard 3: Stormwater Recharge

The Project has been designed to comply with Standard 3. All runoff from impervious areas from the site is discharging into an infiltration BMP. Recharge BMPs have been sized to infiltrate the required recharge volume and sized to drain within 72-hours. These calculations have been provided.

Standard 4: Water Quality

This project has been designed to comply with Standard 4. A water quality calculation has been provided to show that greater than 1" of volume will be treated on site.

Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPLs)

This project is not considered a LUHPPL.

Standard 6: Critical Area

This project will not discharge stormwater near or to a critical area.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the Maximum Extent Practicable

This project is a redevelopment project and has been designed to comply with all the Stormwater Management Standards.

Ref: 15060.00 September 23, 2020

Page 4

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Controls

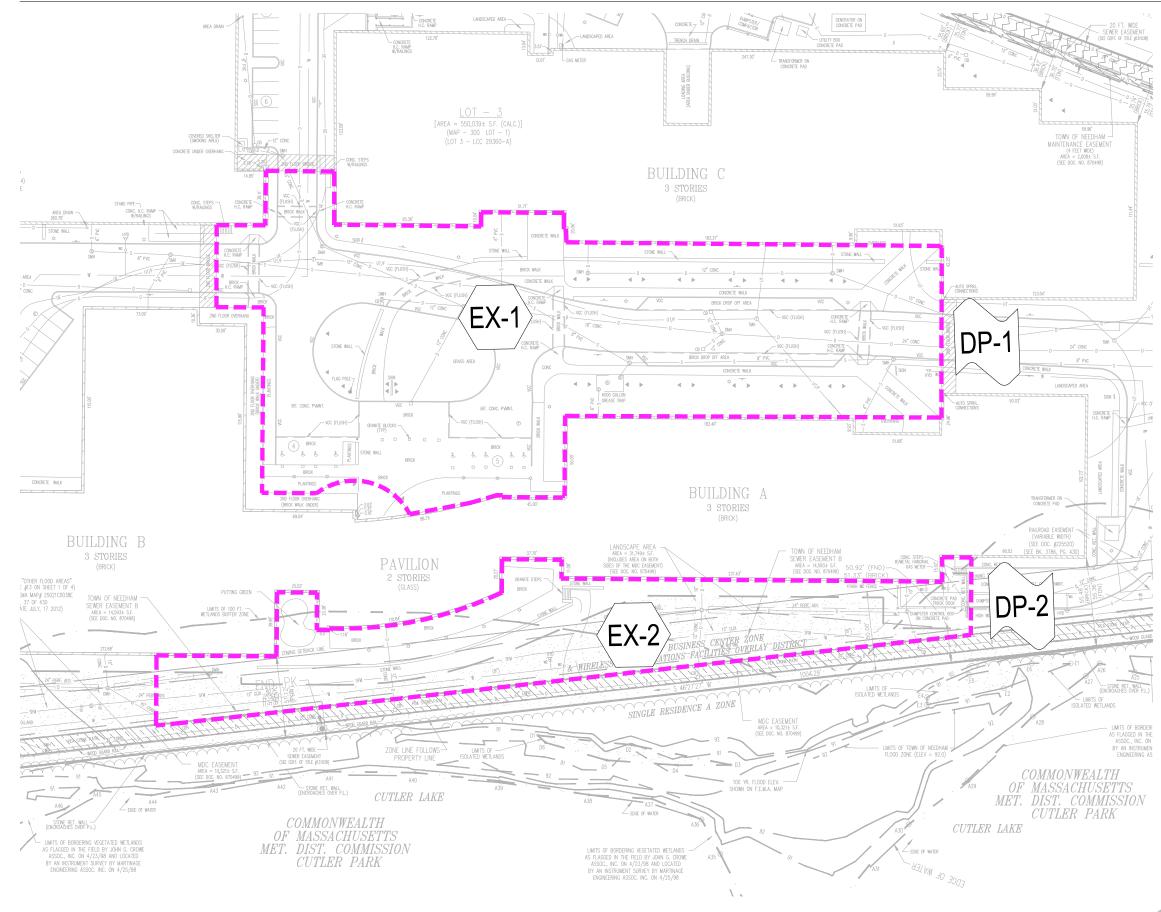
The Project will disturb approximately 2 acres of land and is therefore required to obtain coverage under the Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) Construction General Permit. As required under this permit, a Stormwater Pollution Prevention Plan (SWPPP) will be developed and submitted before land disturbance begins. Recommended construction period pollution prevention and erosion and sedimentation controls to be finalized in the SWPPP are included attached.

Standard 9: Operation and Maintenance Plan

In compliance with Standard 9, a Post Construction Stormwater Operation and Maintenance (O&M) Plan has been developed for the Project. The O&M Plan is included in Appendix D as part of the Long Term Pollution Prevention Plan.

Standard 10: Prohibition of Illicit Discharges

Sanitary sewer and storm drainage structures which were part of the previous development on this site are to be completely removed during the site redevelopment. The design plans submitted with this report have been designed in full compliance with current standards. The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges.


Stormwater Management Summary

The stormwater management design includes BMPs for maintaining stormwater runoff rates and has been developed with guidance provided by the DEP and in accordance with the applicable Town and State requirements listed in previous sections of the memo. A hydrologic model was developed to evaluate the Site's existing and proposed stormwater runoff response and the results of the analysis indicate that the site has been designed such that there will be no increase in peak discharge rates or volumes between the pre- and post-development conditions for the storm events studied. In addition, the subsurface infiltration system and permeable pavers provide a significant improvement to water quality as compared to the existing condition.

ATTACHMENTS:

Supporting Calculations:

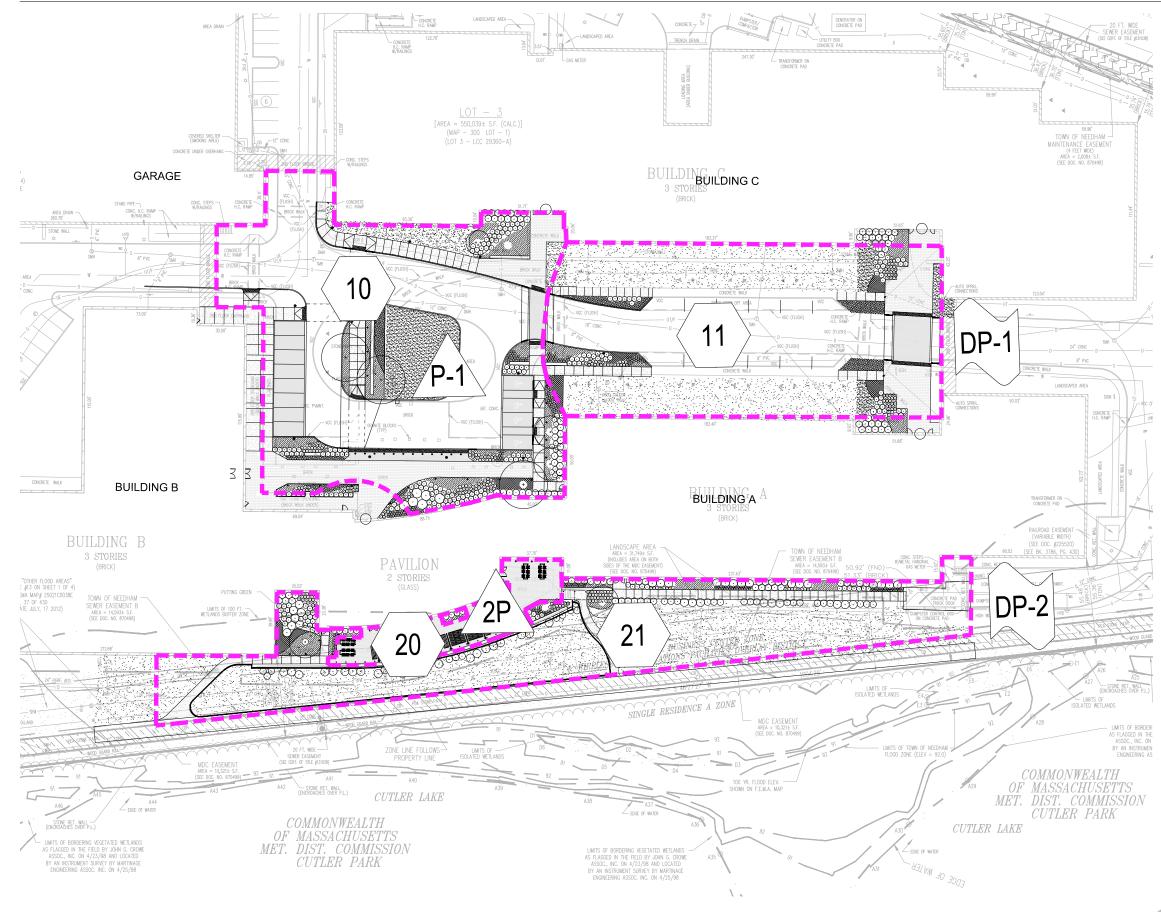
Figure 1 – Existing Drainage Conditions
Figure 2 – Proposed Drainage Conditions
Figure 3 – Impervious Buffer Area Comparison
Water Quality Volume Calculations
Hydrologic Analysis
Long Term Pollution Prevention Plan
Operations and Maintenance Plan
FIRM

Legend

SYMBOLS

DESIGN POINT

DRAINAGE AREA DESIGNATION


POND

LINETYPES

DRAINAGE AREA **BOUNDARY**

WETLAND BOUNDARY

Legend

SYMBOLS

DESIGN POINT

DRAINAGE AREA DESIGNATION

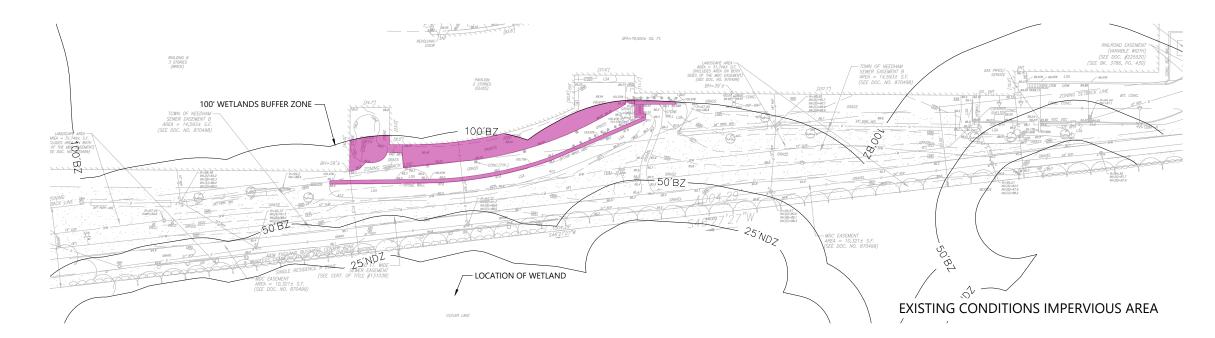
POND

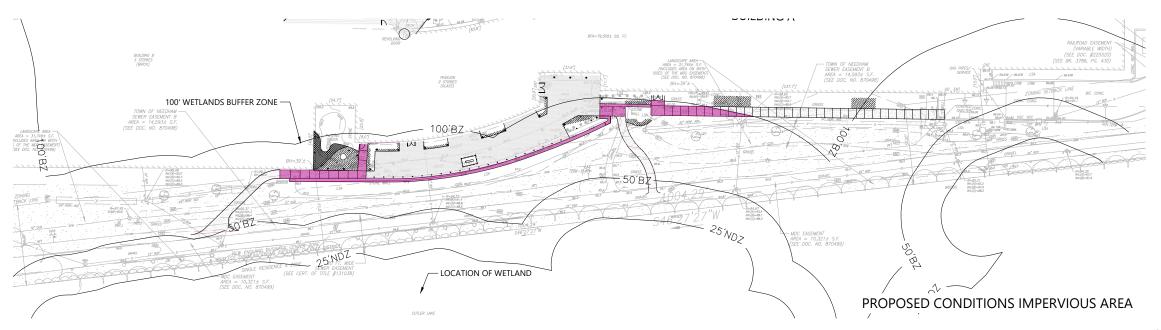
LINETYPES

DRAINAGE AREA BOUNDARY

WETLAND BOUNDARY

100' BUFFER ZONE


9/10/2020


Wetland Buffer Areas

Designation	Existing	Proposed	Delta
APPROXIMATE IMPERVIOUS AREA WITHIN 100' BUFFER	2,480 SF	1,264 SF	-1,216 SF

Legend

Water Quality Volume Calculations

Project Name: 140 Kendrick Street
Project Location: Needham, MA

Proj. No.: _

Date: September 2020

Calculated by: NJS

Checked by:

Limit of Development Area	Limit of
---------------------------	----------

Total Impervious Area = 42,898 sf

Water Quality Requirement:

Water Quality Volume

Runoff Depth to Required

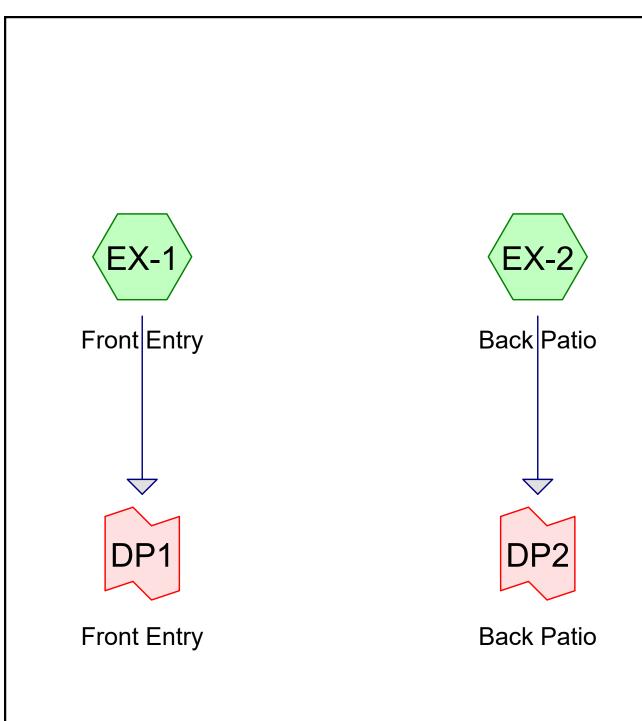
be Treated (in.) Volume (c.f.)

1.0 3,575

Provided:

Permeable Pavers (Rear of Building)

718


*For the 1-year design storm

Proposed Subsurface Infiltration System (Front Drop Off)

3,259

*For the 1-year design storm

<u>Total Provided:</u> 3,977

Printed 9/17/2020

Page 2

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
44,485	39	>75% Grass cover, Good, HSG A (EX-1, EX-2)
42,240	98	Paved parking, HSG A (EX-1, EX-2)
86,725	68	TOTAL AREA

NOAA 24-hr C 2-Year Rainfall=3.33"

Prepared by VHB
HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC

Printed 9/17/2020

Page 3

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Front Entry Runoff Area=60,675 sf 61.34% Impervious Runoff Depth=1.18"

Tc=5.0 min CN=75 Runoff=2.26 cfs 5,981 cf

Subcatchment EX-2: Back Patio Runoff Area=26,050 sf 19.27% Impervious Runoff Depth=0.16"

Tc=5.0 min CN=50 Runoff=0.02 cfs 339 cf

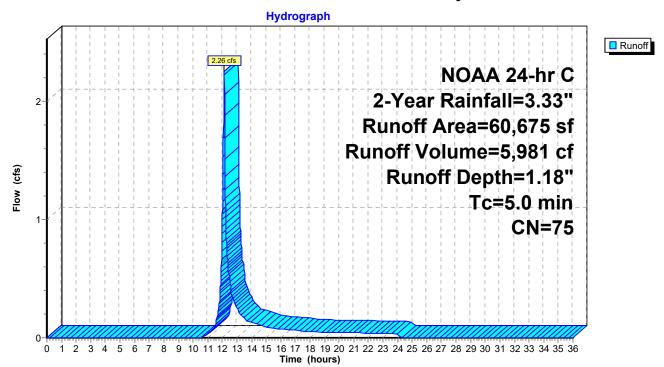
Link DP1: Front Entry Inflow=2.26 cfs 5,981 cf

Primary=2.26 cfs 5,981 cf

Link DP2: Back Patio Inflow=0.02 cfs 339 cf

Primary=0.02 cfs 339 cf

Total Runoff Area = 86,725 sf Runoff Volume = 6,320 cf Average Runoff Depth = 0.87" 51.29% Pervious = 44,485 sf 48.71% Impervious = 42,240 sf

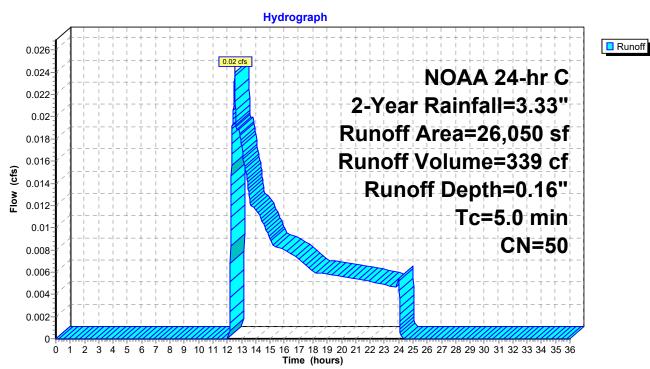

Summary for Subcatchment EX-1: Front Entry

Runoff = 2.26 cfs @ 12.13 hrs, Volume= 5,981 cf, Depth= 1.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 2-Year Rainfall=3.33"

	rea (sf)	CN	Description				
	37,220	98	Paved park	ing, HSG A	4		
	23,455	39	>75% Grass cover, Good, HSG A				
	60,675	75	Weighted A	verage			
	23,455		38.66% Pei	rvious Area	a		
	37,220		61.34% lmp	pervious Ar	rea		
_							
Tc	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0	•				Direct Entry,		

Subcatchment EX-1: Front Entry


Summary for Subcatchment EX-2: Back Patio

Runoff = 0.02 cfs @ 12.53 hrs, Volume= 339 cf, Depth= 0.16"

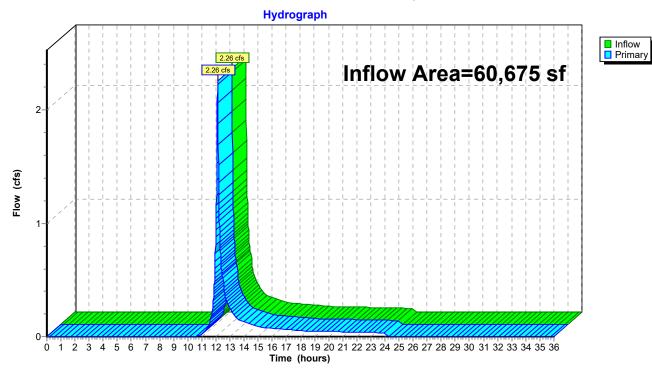
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 2-Year Rainfall=3.33"

Are	ea (sf)	CN	Description				
	5,020	98	Paved parking, HSG A				
2	1,030	39	>75% Grass cover, Good, HSG A				
2	6,050	50	Weighted A	verage			
2	1,030		80.73% Pei	rvious Area	1		
	5,020 19.27% Impervious Area						
_		01	\	0 "	5		
	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)			
5.0					Direct Entry.		

Subcatchment EX-2: Back Patio

Page 6

Summary for Link DP1: Front Entry


Inflow Area = 60,675 sf, 61.34% Impervious, Inflow Depth = 1.18" for 2-Year event

Inflow = 2.26 cfs @ 12.13 hrs, Volume= 5,981 cf

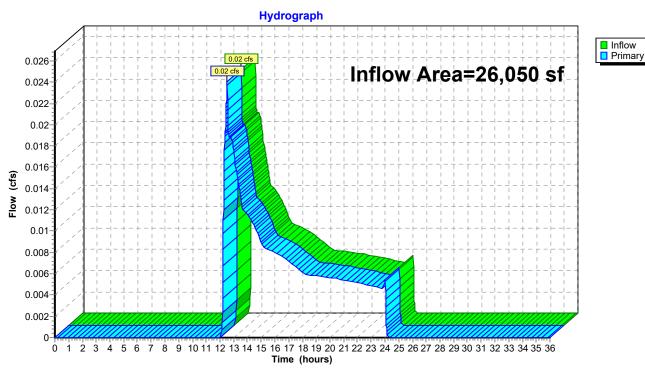
Primary = 2.26 cfs @ 12.13 hrs, Volume= 5,981 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP1: Front Entry

Page 7

Summary for Link DP2: Back Patio


Inflow Area = 26,050 sf, 19.27% Impervious, Inflow Depth = 0.16" for 2-Year event

Inflow = 0.02 cfs @ 12.53 hrs, Volume= 339 cf

Primary = 0.02 cfs @ 12.53 hrs, Volume= 339 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP2: Back Patio

NOAA 24-hr C 10-Year Rainfall=5.22"

Prepared by VHB HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC Printed 9/17/2020

Page 8

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Front Entry Runoff Area=60,675 sf 61.34% Impervious Runoff Depth=2.63"

Tc=5.0 min CN=75 Runoff=5.06 cfs 13,292 cf

SubcatchmentEX-2: Back Patio Runoff Area=26,050 sf 19.27% Impervious Runoff Depth=0.78"

Tc=5.0 min CN=50 Runoff=0.50 cfs 1,703 cf

Link DP1: Front Entry

Inflow=5.06 cfs 13,292 cf
Primary=5.06 cfs 13,292 cf

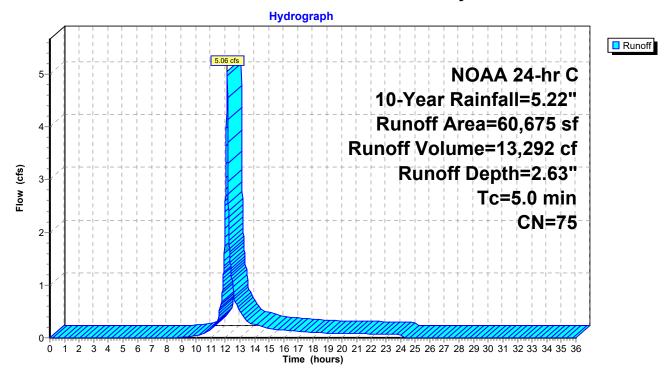
1 milary 0.00 die 10,202 di

Link DP2: Back Patio

Inflow=0.50 cfs 1,703 cf
Primary=0.50 cfs 1,703 cf

Total Runoff Area = 86,725 sf Runoff Volume = 14,995 cf Average Runoff Depth = 2.07" 51.29% Pervious = 44,485 sf 48.71% Impervious = 42,240 sf

Page 9


Summary for Subcatchment EX-1: Front Entry

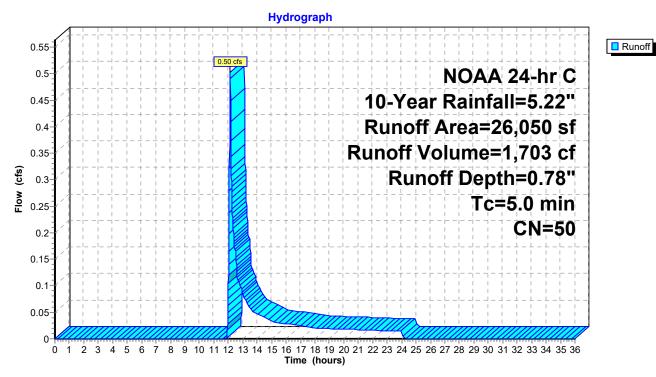
Runoff = 5.06 cfs @ 12.13 hrs, Volume= 13,292 cf, Depth= 2.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 10-Year Rainfall=5.22"

Area (sf) C		CN	Description					
(37,220	98	Paved park	ing, HSG A	4			
	23,455	39	>75% Grass cover, Good, HSG A					
60,675 75		75	Weighted Average					
23,455		;	38.66% Pervious Area					
37,220		(61.34% Impervious Area					
То	Longth	Clana	Valacity	Consoity	Description			
	Length	Slope	,	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0					Direct Entry,			

Subcatchment EX-1: Front Entry

Page 10


Summary for Subcatchment EX-2: Back Patio

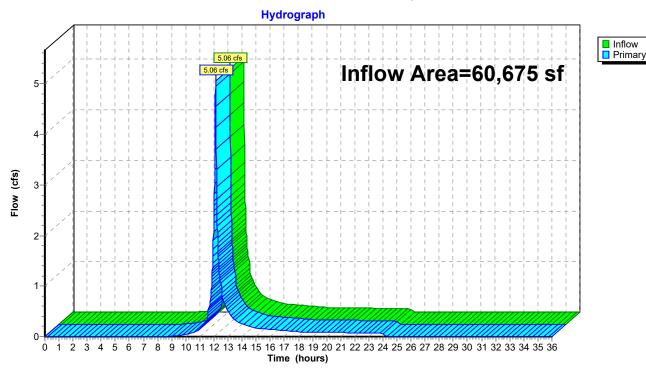
Runoff = 0.50 cfs @ 12.14 hrs, Volume= 1,703 cf, Depth= 0.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 10-Year Rainfall=5.22"

Area	Area (sf) CN Description						
5,	020 98	Paved park	king, HSG A				
21,	030 39	>75% Grass cover, Good, HSG A					
26,	26,050 50 Weighted Average						
21,	030	80.73% Pervious Area					
5,	020	19.27% Impervious Area					
To la	ماک مالاسما	no Volocity	Canacity	Description			
	ength Slo	. ,	Capacity	Description			
(min)(feet) (ft	/ft) (ft/sec)	(cfs)				
5.0				Direct Entry,			

Subcatchment EX-2: Back Patio

Summary for Link DP1: Front Entry


Inflow Area = 60,675 sf, 61.34% Impervious, Inflow Depth = 2.63" for 10-Year event

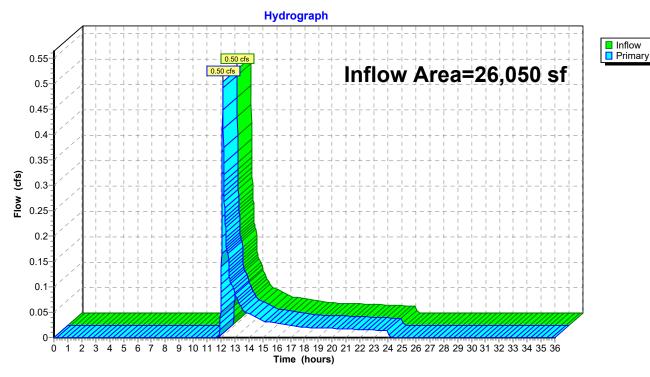
Inflow = 5.06 cfs @ 12.13 hrs, Volume= 13,292 cf

Primary = 5.06 cfs @ 12.13 hrs, Volume= 13,292 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP1: Front Entry

Summary for Link DP2: Back Patio


Inflow Area = 26,050 sf, 19.27% Impervious, Inflow Depth = 0.78" for 10-Year event

Inflow = 0.50 cfs @ 12.14 hrs, Volume= 1,703 cf

Primary = 0.50 cfs @ 12.14 hrs, Volume= 1,703 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP2: Back Patio

NOAA 24-hr C 25-Year Rainfall=6.39"

Prepared by VHB HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC Printed 9/17/2020

Page 13

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Front Entry Runoff Area=60,675 sf 61.34% Impervious Runoff Depth=3.62"

Tc=5.0 min CN=75 Runoff=6.90 cfs 18,288 cf

Subcatchment EX-2: Back Patio Runoff Area=26,050 sf 19.27% Impervious Runoff Depth=1.34"

Tc=5.0 min CN=50 Runoff=1.00 cfs 2,907 cf

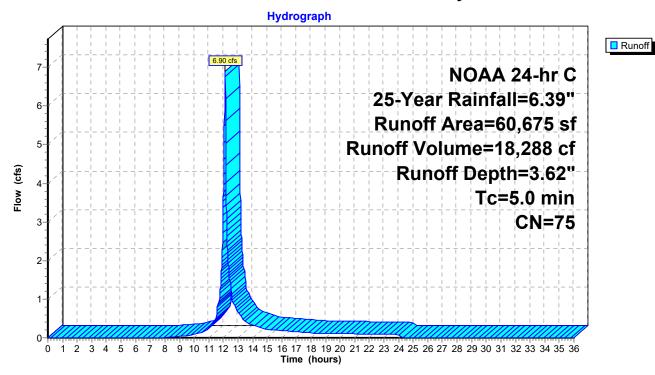
Link DP1: Front Entry Inflow=6.90 cfs 18,288 cf

Primary=6.90 cfs 18,288 cf

Link DP2: Back Patio

Inflow=1.00 cfs 2,907 cf
Primary=1.00 cfs 2,907 cf

Total Runoff Area = 86,725 sf Runoff Volume = 21,195 cf Average Runoff Depth = 2.93" 51.29% Pervious = 44,485 sf 48.71% Impervious = 42,240 sf

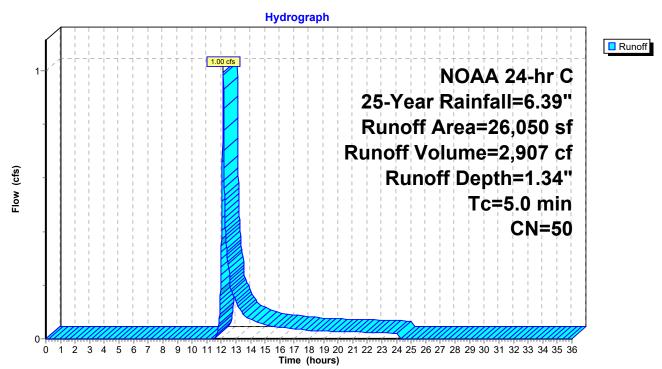

Summary for Subcatchment EX-1: Front Entry

Runoff = 6.90 cfs @ 12.12 hrs, Volume= 18,288 cf, Depth= 3.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 25-Year Rainfall=6.39"

Area (sf)	CN	Description			
37,220	98	Paved park	ing, HSG A	A	
23,455	39	>75% Gras	s cover, Go	ood, HSG A	
60,675	75	Weighted Average			
23,455		38.66% Pervious Area			
37,220		61.34% Imp	pervious Ar	rea	
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description	
5.0				Direct Entry,	

Subcatchment EX-1: Front Entry


Summary for Subcatchment EX-2: Back Patio

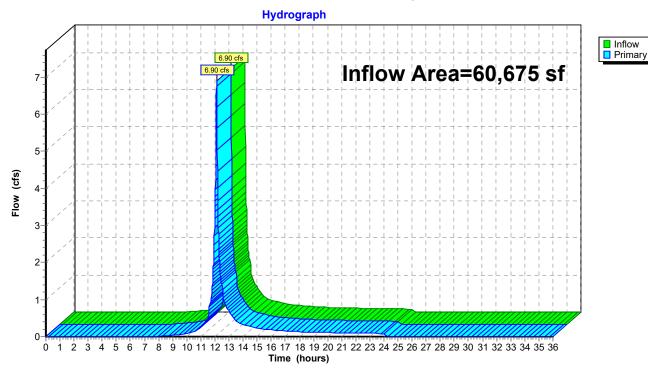
Runoff = 1.00 cfs @ 12.13 hrs, Volume= 2,907 cf, Depth= 1.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 25-Year Rainfall=6.39"

Are	ea (sf)	CN [Description		
	5,020	98 F	Paved park	ing, HSG A	4
2	21,030	39 >	75% Gras	s cover, Go	ood, HSG A
2	26,050	50 \	Veighted A	verage	
2	21,030	8	80.73% Pervious Area		
	5,020	•	19.27% Imp	ervious Ar	rea
_					
	Length	Slope	,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,

Subcatchment EX-2: Back Patio

Summary for Link DP1: Front Entry


Inflow Area = 60,675 sf, 61.34% Impervious, Inflow Depth = 3.62" for 25-Year event

Inflow = 6.90 cfs @ 12.12 hrs, Volume= 18,288 cf

Primary = 6.90 cfs @ 12.12 hrs, Volume= 18,288 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP1: Front Entry

Summary for Link DP2: Back Patio

Inflow Area = 26,050 sf, 19.27% Impervious, Inflow Depth = 1.34" for 25-Year event

Inflow = 1.00 cfs @ 12.13 hrs, Volume= 2,907 cf

Primary = 1.00 cfs @ 12.13 hrs, Volume= 2,907 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP2: Back Patio

NOAA 24-hr C 100-Year Rainfall=8.21"

Prepared by VHB HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC Printed 9/17/2020

Page 18

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEX-1: Front Entry Runoff Area=60,675 sf 61.34% Impervious Runoff Depth=5.23"

Tc=5.0 min CN=75 Runoff=9.85 cfs 26,452 cf

Subcatchment EX-2: Back Patio Runoff Area=26,050 sf 19.27% Impervious Runoff Depth=2.38"

Tc=5.0 min CN=50 Runoff=1.90 cfs 5,164 cf

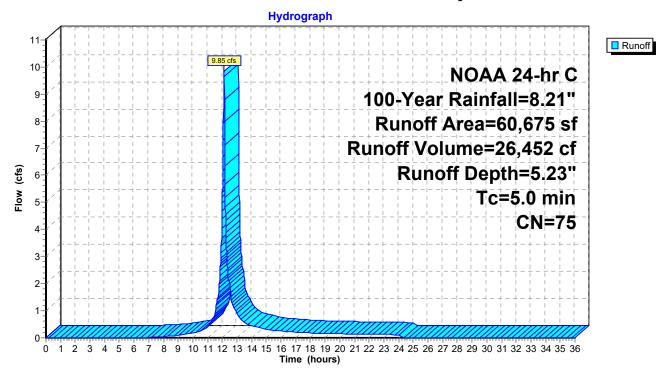
Link DP1: Front Entry Inflow=9.85 cfs 26,452 cf

Primary=9.85 cfs 26,452 cf

Link DP2: Back Patio Inflow=1.90 cfs 5,164 cf

Primary=1.90 cfs 5,164 cf

Total Runoff Area = 86,725 sf Runoff Volume = 31,617 cf Average Runoff Depth = 4.37" 51.29% Pervious = 44,485 sf 48.71% Impervious = 42,240 sf

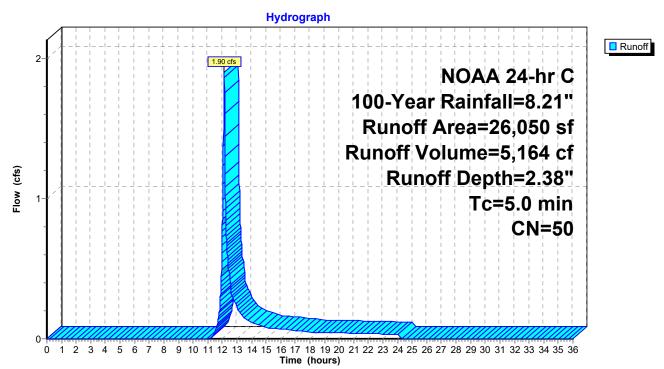

Summary for Subcatchment EX-1: Front Entry

Runoff = 9.85 cfs @ 12.12 hrs, Volume= 26,452 cf, Depth= 5.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

A	rea (sf)	CN	Description			
	37,220	98	Paved park	ing, HSG A	A	
	23,455	39	>75% Gras	s cover, Go	ood, HSG A	
	60,675	75	Weighted A	verage		
	23,455		38.66% Pervious Area			
	37,220		61.34% lmp	ervious Ar	rea	
_						
Тс	Length	Slope	,	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment EX-1: Front Entry


Summary for Subcatchment EX-2: Back Patio

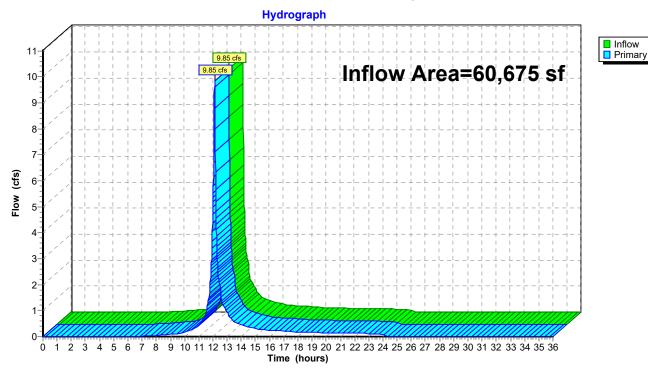
Runoff = 1.90 cfs @ 12.13 hrs, Volume= 5,164 cf, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

Area (sf)	CN	Description			
5,020	98	Paved park	ing, HSG A	4	
21,030	39	>75% Gras	s cover, Go	ood, HSG A	
26,050	50	Weighted Average			
21,030		80.73% Pervious Area			
5,020		19.27% lmp	pervious Ar	rea	
Tc Length	Slor	e Velocity	Capacity	Description	
(min) (feet)	(ft/f	,	(cfs)		
5.0				Direct Entry,	

Subcatchment EX-2: Back Patio

Summary for Link DP1: Front Entry


Inflow Area = 60,675 sf, 61.34% Impervious, Inflow Depth = 5.23" for 100-Year event

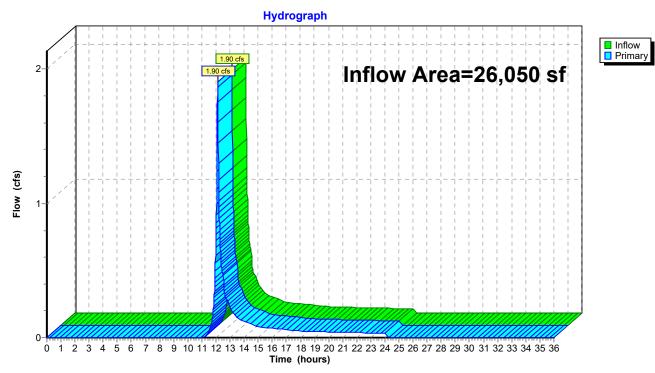
Inflow = 9.85 cfs @ 12.12 hrs, Volume= 26,452 cf

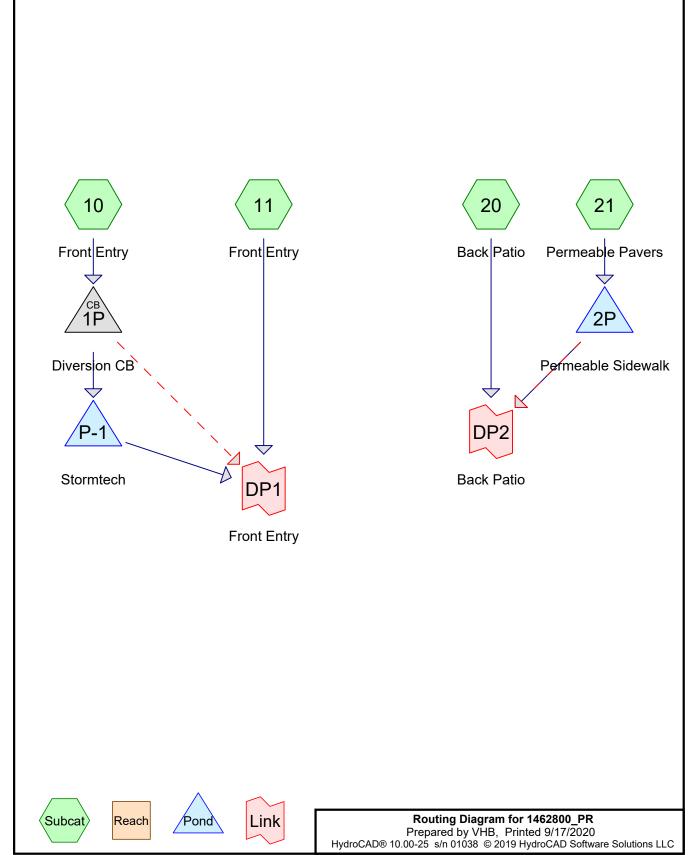
Primary = 9.85 cfs @ 12.12 hrs, Volume= 26,452 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP1: Front Entry

Summary for Link DP2: Back Patio


Inflow Area = 26,050 sf, 19.27% Impervious, Inflow Depth = 2.38" for 100-Year event


Inflow = 1.90 cfs @ 12.13 hrs, Volume= 5,164 cf

Primary = 1.90 cfs @ 12.13 hrs, Volume= 5,164 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP2: Back Patio

Printed 9/17/2020 Page 2

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
40,332	39	>75% Grass cover, Good, HSG A (10, 11, 20)
42,893	98	Paved parking, HSG A (10, 11, 20)
3,500	98	Permeable (21)
86,725	71	TOTAL AREA

NOAA 24-hr C 2-Year Rainfall=3.33"

Prepared by VHB HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC Printed 9/17/2020

Page 3

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: Front Entry

Runoff Area=34,320 sf 72.93% Impervious Runoff Depth=1.64"

Tc=5.0 min CN=82 Runoff=1.79 cfs 4,700 cf

Subcatchment11: Front Entry Runoff Area=26,355 sf 52.38% Impervious Runoff Depth=0.90"

Tc=5.0 min CN=70 Runoff=0.73 cfs 1,987 cf

Subcatchment20: Back Patio Runoff Area=22,550 sf 18.00% Impervious Runoff Depth=0.16"

Tc=5.0 min CN=50 Runoff=0.02 cfs 293 cf

Subcatchment21: Permeable Pavers Runoff Area=3,500 sf 100.00% Impervious Runoff Depth=3.10"

Tc=5.0 min CN=98 Runoff=0.29 cfs 903 cf

Pond 1P: Diversion CB Peak Elev=93.98' Inflow=1.79 cfs 4,700 cf

Primary=1.79 cfs 4,700 cf Secondary=0.00 cfs 0 cf Outflow=1.79 cfs 4,700 cf

Pond 2P: Permeable Sidewalk Peak Elev=98.60' Storage=135 cf Inflow=0.29 cfs 903 cf

Discarded=0.08 cfs 904 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.08 cfs 904 cf

Pond P-1: Stormtech Peak Elev=93.98' Storage=2,771 cf Inflow=1.79 cfs 4,700 cf

Discarded=0.05 cfs 4,511 cf Primary=0.00 cfs 0 cf Outflow=0.05 cfs 4,511 cf

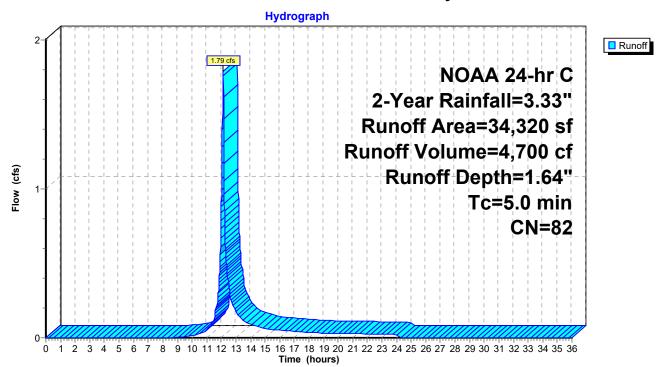
Link DP1: Front Entry Inflow=0.73 cfs 1,987 cf

Primary=0.73 cfs 1,987 cf

Link DP2: Back Patio Inflow=0.02 cfs 293 cf

Primary=0.02 cfs 293 cf

Total Runoff Area = 86,725 sf Runoff Volume = 7,884 cf Average Runoff Depth = 1.09" 46.51% Pervious = 40,332 sf 53.49% Impervious = 46,393 sf

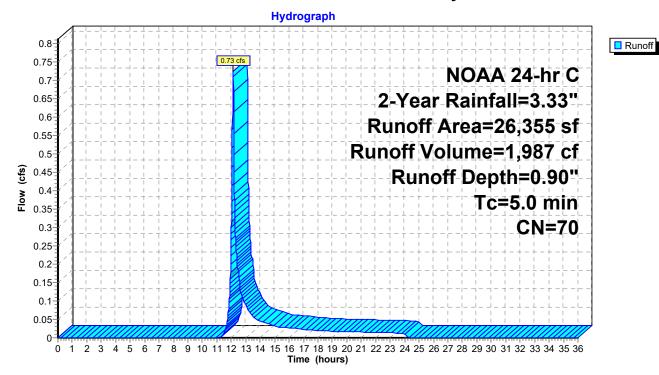

Summary for Subcatchment 10: Front Entry

Runoff = 1.79 cfs @ 12.13 hrs, Volume= 4,700 cf, Depth= 1.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 2-Year Rainfall=3.33"

A	rea (sf)	CN	Description			
	25,030	98	Paved park	ing, HSG A	4	
	9,290	39	>75% Ġras	s cover, Go	ood, HSG A	
	34,320	82	Weighted A	verage		
	9,290		27.07% Pervious Area			
	25,030		72.93% lmp	ervious Ar	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description	
5.0	, /	, ,	•	, ,	Direct Entry,	

Subcatchment 10: Front Entry

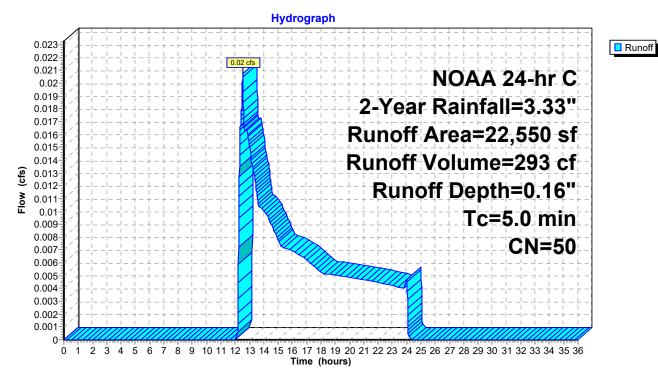

Summary for Subcatchment 11: Front Entry

Runoff = 0.73 cfs @ 12.13 hrs, Volume= 1,987 cf, Depth= 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 2-Year Rainfall=3.33"

	Area (sf)	CN	Description			
	13,805	98	Paved park	ing, HSG A	A	
	12,550	39	>75% Ġras	s cover, Go	ood, HSG A	
	26,355	70	Weighted Average			
	12,550		47.62% Pervious Area			
	13,805		52.38% lmp	pervious Ar	rea	
T	Length	Slone	Velocity	Capacity	Description	
To (min	-	Slope (ft/ft)	,	(cfs)	Description	
		(11/11)	(II/Sec)	(CIS)		
5.0)				Direct Entry,	

Subcatchment 11: Front Entry


Summary for Subcatchment 20: Back Patio

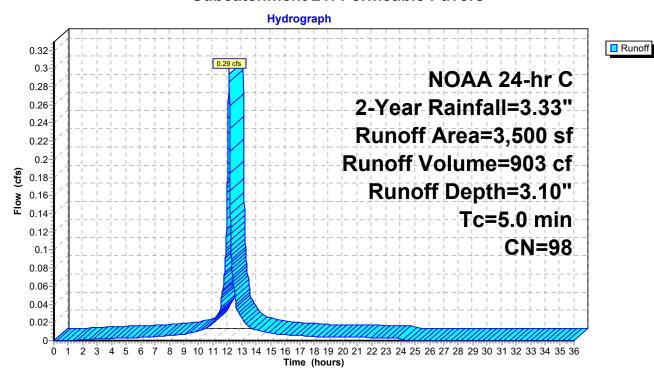
Runoff = 0.02 cfs @ 12.53 hrs, Volume= 293 cf, Depth= 0.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 2-Year Rainfall=3.33"

Area (s	f) CN	Description					
4,05	8 98	Paved park	ing, HSG A	A			
18,49	2 39	>75% Gras	s cover, Go	ood, HSG A			
22,55	50 50	Weighted A	Weighted Average				
18,49	92	82.00% Pei	82.00% Pervious Area				
4,05	58	18.00% Imp	pervious Ar	rea			
Tc Len (min) (fe	•	,	Capacity (cfs)	Description			
5.0				Direct Entry,			

Subcatchment 20: Back Patio

Page 7


Summary for Subcatchment 21: Permeable Pavers

Runoff = 0.29 cfs @ 12.12 hrs, Volume= 903 cf, Depth= 3.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 2-Year Rainfall=3.33"

_	Α	rea (sf)	CN [Description			
*		3,500	98 F	Permeable			
		3,500	,	100.00% Impervious Area			
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	5.0					Direct Entry,	

Subcatchment 21: Permeable Pavers

Page 8

Summary for Pond 1P: Diversion CB

Inflow Area =	34,320 sf,	72.93% Impervious, Inflo	w Depth = 1.64"	for 2-Year event
Inflow =	1.79 cfs @	12.13 hrs, Volume=	4,700 cf	
Outflow =	1.79 cfs @	12.13 hrs, Volume=	4,700 cf, Att	ten= 0%, Lag= 0.0 min
Primary =	1.79 cfs @	12.13 hrs, Volume=	4,700 cf	
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0 cf	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 93.98' @ 16.27 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	92.60'	24.0" Round Culvert
	-		L= 10.0' RCP, sq.cut end projecting, Ke= 0.500
			Inlet / Outlet Invert= 92.60' / 92.50' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Secondary	94.40'	10.0" Round Culvert
			L= 5.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 94.40' / 94.30' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.55 sf

Primary OutFlow Max=1.78 cfs @ 12.13 hrs HW=93.24' TW=92.93' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.78 cfs @ 3.11 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=92.60' TW=0.00' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Pond 1P: Diversion CB

Printed 9/17/2020 Page 9

Summary for Pond 2P: Permeable Sidewalk

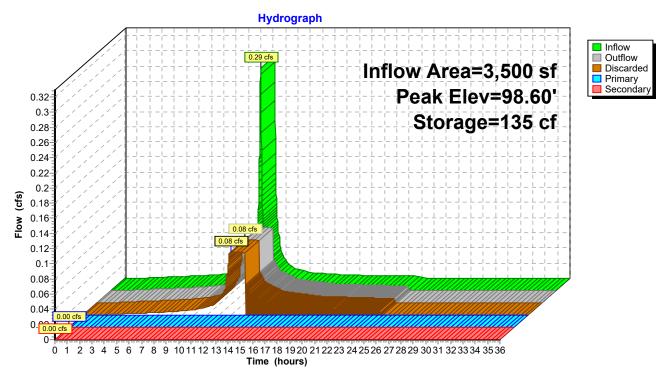
Inflow Area =	3,500 sf,100.00% Impervious, Inflow D	Depth = 3.10" for 2-Year event
Inflow =	0.29 cfs @ 12.12 hrs, Volume=	903 cf
Outflow =	0.08 cfs @ 12.01 hrs, Volume=	904 cf, Atten= 72%, Lag= 0.0 min
Discarded =	0.08 cfs @ 12.01 hrs, Volume=	904 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 98.60' @ 12.32 hrs Surf.Area= 3,500 sf Storage= 135 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 6.7 min (762.5 - 755.8)

Volume	Invert	Avail.Stor	age Sto	rage Descripti	ion	
#1	98.50'	1,75	0 cf Pe	meable (Pris	matic)Li	isted below (Recalc)
			4,3	75 cf Overall	x 40.0 [°] %	Voids
#2	99.75'	87	5 cf Su	rface (Prisma	itic)Liste	ed below (Recalc) -Impervious
		2,62	5 cf To	al Available S	torage	
Elevation	on Su	rf.Area	Inc.Sto	re Cum	.Store	
(fee	et)	(sq-ft)	(cubic-fee	et) (cubio	c-feet)	
98.5	50	3,500		0	0	
99.7	' 5	3,500	4,3	75	4,375	
Elevation		rf.Area	Inc.Sto		.Store	
(fee	et)	(sq-ft)	(cubic-fee	et) (cubio	c-feet)	
99.7	' 5	3,500		0	0	
100.0	00	3,500	8	75	875	
	_					
Device	Routing	Invert	Outlet D			
#1	Discarded	98.50'		hr Exfiltratio		
#2	Primary	98.75'				RCP, sq.cut end projecting, Ke= 0.500
						3.40' S= 0.0350 '/' Cc= 0.900
				, Flow Area=		
#3	Secondary	99.95'				ad-Crested Rectangular Weir
						.80 1.00 1.20 1.40 1.60 1.80 2.00
				0 3.50 4.00		
			Coef. (E	nglish) 2.38 2	2.54 2.6	9 2.68 2.67 2.67 2.65 2.66 2.66


2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Discarded OutFlow Max=0.08 cfs @ 12.01 hrs HW=98.52' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=98.50' TW=0.00' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=98.50' TW=0.00' (Dynamic Tailwater) 3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 2P: Permeable Sidewalk

Page 11

Summary for Pond P-1: Stormtech

Inflow Area = 34,320 sf, 72.93% Impervious, Inflow Depth = 1.64" for 2-Year event
Inflow = 1.79 cfs @ 12.13 hrs, Volume= 4,700 cf
Outflow = 0.05 cfs @ 11.95 hrs, Volume= 4,511 cf, Atten= 97%, Lag= 0.0 min
Discarded = 0.05 cfs @ 11.95 hrs, Volume= 4,511 cf
Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 93.98' @ 16.26 hrs Surf.Area= 2,062 sf Storage= 2,771 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 550.6 min (1,387.4 - 836.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	92.00'	1,878 cf	44.25'W x 46.34'L x 3.50'H Field A
			7,176 cf Overall - 2,481 cf Embedded = 4,696 cf x 40.0% Voids
#2A	92.50'	2,481 cf	ADS_StormTech SC-740 +Cap x 54 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			54 Chambers in 9 Rows
#3	92.50'	861 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		5,220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
92.50	12	0	0
96.90	12	53	53
97.00	110	6	59
97.50	3,100	803	861

Device	Routing	Invert	Outlet Devices
#1	Primary	96.90'	2.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	·		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32
#2	Discarded	92.00'	1.020 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 11.95 hrs HW=92.51' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=92.00' TW=0.00' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Page 12

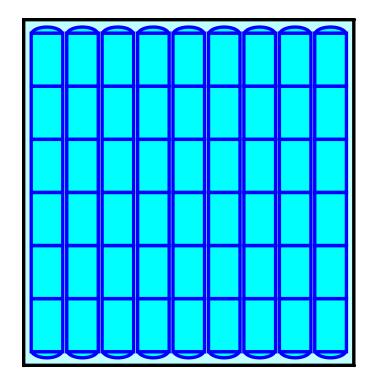
Pond P-1: Stormtech - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

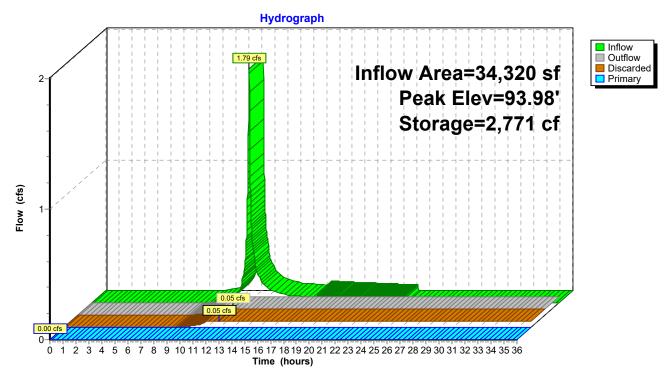
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

6 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 44.34' Row Length +12.0" End Stone x 2 = 46.34' Base Length


9 Rows x 51.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 44.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

54 Chambers x 45.9 cf = 2,480.8 cf Chamber Storage

7,176.4 cf Field - 2,480.8 cf Chambers = 4,695.6 cf Stone x 40.0% Voids = 1,878.3 cf Stone Storage


Chamber Storage + Stone Storage = 4,359.0 cf = 0.100 af Overall Storage Efficiency = 60.7% Overall System Size = 46.34' x 44.25' x 3.50'

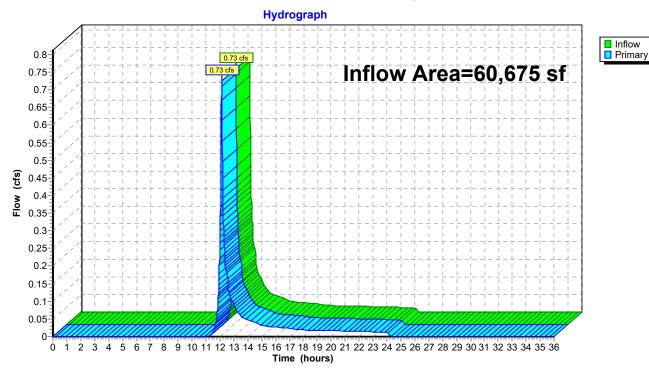
54 Chambers 265.8 cy Field 173.9 cy Stone

Pond P-1: Stormtech

Printed 9/17/2020

Page 14

Summary for Link DP1: Front Entry


Inflow Area = 60,675 sf, 64.00% Impervious, Inflow Depth = 0.39" for 2-Year event

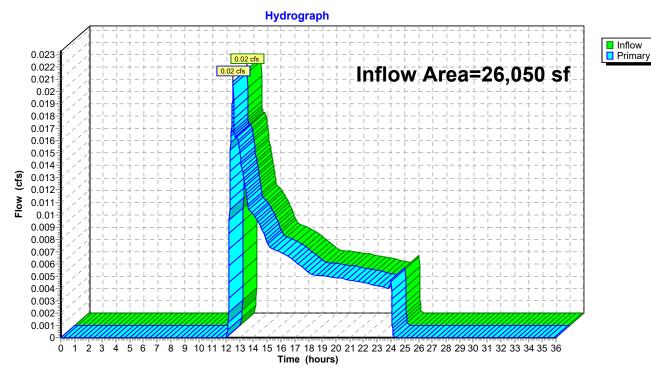
Inflow = 0.73 cfs @ 12.13 hrs, Volume= 1,987 cf

Primary = 0.73 cfs @ 12.13 hrs, Volume= 1,987 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP1: Front Entry

Summary for Link DP2: Back Patio


26,050 sf, 29.01% Impervious, Inflow Depth = 0.14" for 2-Year event Inflow Area =

Inflow 0.02 cfs @ 12.53 hrs, Volume= 293 cf

0.02 cfs @ 12.53 hrs, Volume= Primary 293 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP2: Back Patio

NOAA 24-hr C 10-Year Rainfall=5.22"

Prepared by VHB HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC Printed 9/17/2020

Page 16

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: Front Entry Runoff Area=34,320 sf 72.93% Impervious Runoff Depth=3.28"

Tc=5.0 min CN=82 Runoff=3.50 cfs 9,371 cf

Subcatchment11: Front Entry

Runoff Area=26,355 sf 52.38% Impervious Runoff Depth=2.20"

Tc=5.0 min CN=70 Runoff=1.84 cfs 4,834 cf

Subcatchment20: Back Patio Runoff Area=22,550 sf 18.00% Impervious Runoff Depth=0.78"

Tc=5.0 min CN=50 Runoff=0.44 cfs 1,474 cf

Subcatchment21: Permeable Pavers Runoff Area=3,500 sf 100.00% Impervious Runoff Depth=4.98"

Tc=5.0 min CN=98 Runoff=0.46 cfs 1,453 cf

Pond 1P: Diversion CB Peak Elev=94.94' Inflow=3.50 cfs 9,371 cf

Primary=3.50 cfs 6,045 cf Secondary=0.87 cfs 3,325 cf Outflow=3.50 cfs 9,370 cf

Pond 2P: Permeable Sidewalk Peak Elev=98.73' Storage=320 cf Inflow=0.46 cfs 1,453 cf

Discarded=0.08 cfs 1,454 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.08 cfs 1,454 cf

Pond P-1: Stormtech Peak Elev=94.94' Storage=3,928 cf Inflow=3.50 cfs 6,045 cf

Discarded=0.05 cfs 4,813 cf Primary=0.00 cfs 0 cf Outflow=0.05 cfs 4,813 cf

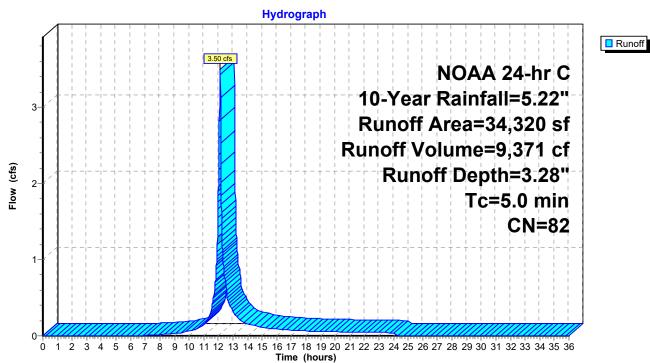
Link DP1: Front Entry Inflow=1.84 cfs 8,158 cf

Primary=1.84 cfs 8,158 cf

Link DP2: Back Patio Inflow=0.44 cfs 1,474 cf

Primary=0.44 cfs 1,474 cf

Total Runoff Area = 86,725 sf Runoff Volume = 17,132 cf Average Runoff Depth = 2.37" 46.51% Pervious = 40,332 sf 53.49% Impervious = 46,393 sf

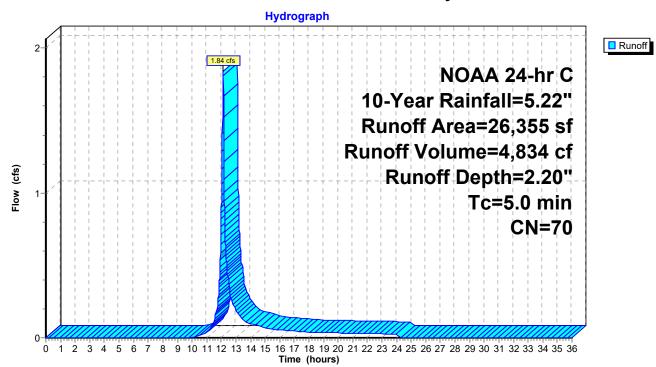

Summary for Subcatchment 10: Front Entry

Runoff = 3.50 cfs @ 12.12 hrs, Volume= 9,371 cf, Depth= 3.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 10-Year Rainfall=5.22"

A	rea (sf)	CN	Description		
	25,030	98	Paved park	ing, HSG A	4
	9,290	39	>75% Gras	s cover, Go	ood, HSG A
	34,320	82	Weighted A	verage	
	9,290		27.07% Pei	vious Area	a
	25,030		72.93% Imp	ervious Ar	rea
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 10: Front Entry

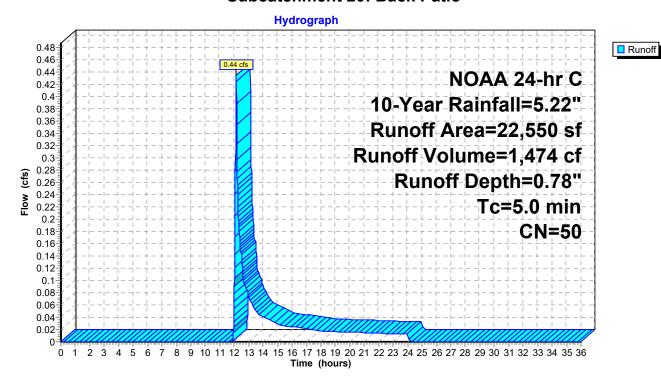

Summary for Subcatchment 11: Front Entry

Runoff = 1.84 cfs @ 12.13 hrs, Volume= 4,834 cf, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 10-Year Rainfall=5.22"

Ar	rea (sf)	CN	Description		
	13,805	98	Paved park	ing, HSG A	A
	12,550	39	>75% Ġras	s cover, Go	ood, HSG A
	26,355	70	Neighted A	verage	
	12,550		47.62% Per	vious Area	a
	13,805	;	52.38% Imp	pervious Ar	rea
To	Longth	Slope	Volocity	Canacity	Description
	Length	Slope	,	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry,

Subcatchment 11: Front Entry


Summary for Subcatchment 20: Back Patio

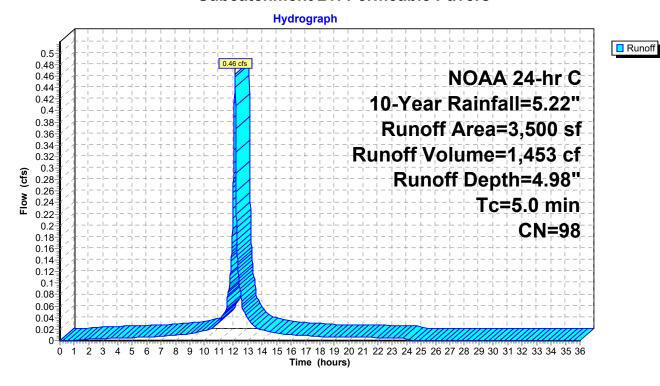
Runoff = 0.44 cfs @ 12.14 hrs, Volume= 1,474 cf, Depth= 0.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 10-Year Rainfall=5.22"

Area (s	f) CN	Description		
4,05	8 98	Paved park	ing, HSG A	A
18,49	2 39	>75% Gras	s cover, Go	ood, HSG A
22,55	50 50	Weighted A	verage	
18,49	92	82.00% Pei	rvious Area	a
4,05	58	18.00% Imp	pervious Ar	rea
Tc Len (min) (fe	•	,	Capacity (cfs)	Description
5.0				Direct Entry,

Subcatchment 20: Back Patio

Page 20


Summary for Subcatchment 21: Permeable Pavers

Runoff = 0.46 cfs @ 12.12 hrs, Volume= 1,453 cf, Depth= 4.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 10-Year Rainfall=5.22"

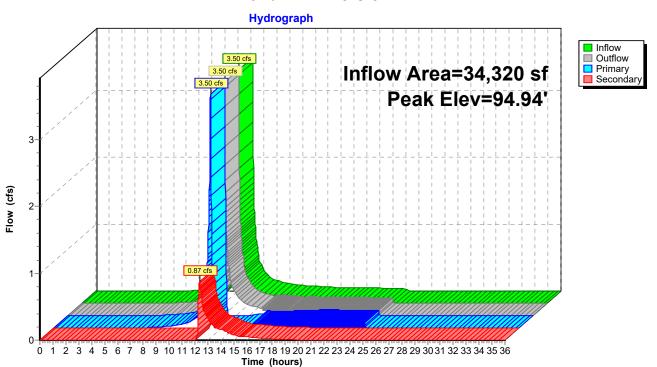
_	Α	rea (sf)	CN [Description		
*		3,500	98 F	Permeable		
_		3,500	,	100.00% Im	npervious A	Area
		Length	Slope	,		Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 21: Permeable Pavers

Page 21

Summary for Pond 1P: Diversion CB

Inflow Area =	34,320 sf,	72.93% Impervious, Inflow	Depth = 3.28 "	for 10-Year event
Inflow =	3.50 cfs @	12.12 hrs, Volume=	9,371 cf	
Outflow =	3.50 cfs @	12.12 hrs, Volume=	9,370 cf, At	ten= 0%, Lag= 0.0 min
Primary =	3.50 cfs @	12.12 hrs, Volume=	6,045 cf	
Secondary =	0.87 cfs @	12.36 hrs, Volume=	3,325 cf	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 94.94' @ 12.36 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	92.60'	24.0" Round Culvert
	-		L= 10.0' RCP, sq.cut end projecting, Ke= 0.500
			Inlet / Outlet Invert= 92.60' / 92.50' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Secondary	94.40'	10.0" Round Culvert
			L= 5.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 94.40' / 94.30' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.55 sf

Primary OutFlow Max=1.41 cfs @ 12.12 hrs HW=94.03' TW=94.02' (Dynamic Tailwater) 1=Culvert (Outlet Controls 1.41 cfs @ 0.82 fps)

Secondary OutFlow Max=0.87 cfs @ 12.36 hrs HW=94.94' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 0.87 cfs @ 3.32 fps)

Pond 1P: Diversion CB

Page 22

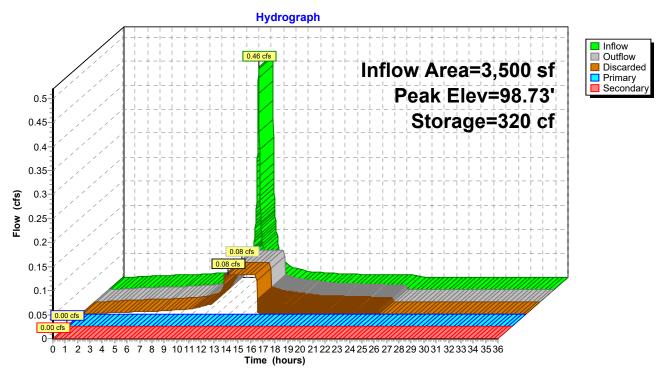
Summary for Pond 2P: Permeable Sidewalk

Inflow Area =	3,500 sf,100.00% Impervious, Inflow	Depth = 4.98" for 10-Year event
Inflow =	0.46 cfs @ 12.12 hrs, Volume=	1,453 cf
Outflow =	0.08 cfs @ 11.89 hrs, Volume=	1,454 cf, Atten= 82%, Lag= 0.0 min
Discarded =	0.08 cfs @ 11.89 hrs, Volume=	1,454 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 98.73' @ 12.54 hrs Surf.Area= 3,500 sf Storage= 320 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 19.2 min (766.4 - 747.2)

Volume	Invert	Avail.Sto	rage Stora	ge Description		
#1	98.50'	1,75	0 cf Perm	eable (Prismatic)L	isted below (Recalc)	
			4,375	cf Overall x 40.0%	Voids	
#2	99.75'	87	75 cf Surfa	ce (Prismatic)Liste	ed below (Recalc) -Impervious	;
		2,62	25 cf Total	Available Storage		
	_					
Elevation	on Su	ırf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
98.5	50	3,500	0	0		
99.7	75	3,500	4,375	4,375		
Elevation	on Su	ırf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
99.7	7 5	3,500	0	0		
100.0	00	3,500	875	875		
Device	Routing	Invert	Outlet Devi	ces		
#1	Discarded	98.50'	1.020 in/hr	Exfiltration over S	Surface area	
#2	Primary	98.75'	6.0" Roun	d Culvert L= 10.0'	RCP, sq.cut end projecting,	Ke= 0.500


			\$ MM - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
#1	Discarded	98.50'	1.020 in/hr Exfiltration over Surface area
#2	Primary	98.75'	6.0" Round Culvert L= 10.0' RCP, sq.cut end projecting, Ke= 0.500
			Inlet / Outlet Invert= 98.75' / 98.40' S= 0.0350 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf
#3	Secondary	99.95'	20.0' long x 4.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66
			2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Discarded OutFlow Max=0.08 cfs @ 11.89 hrs HW=98.52' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=98.50' TW=0.00' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=98.50' TW=0.00' (Dynamic Tailwater) 3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 2P: Permeable Sidewalk

Page 24

Summary for Pond P-1: Stormtech

Inflow Area =	34,320 sf, 72.93% Impervious, Inflow	Depth = 2.11" for 10-Year event	
Inflow =	3.50 cfs @ 12.12 hrs, Volume=	6,045 cf	
Outflow =	0.05 cfs @ 11.45 hrs, Volume=	4,813 cf, Atten= 99%, Lag= 0.0 m	in
Discarded =	0.05 cfs @ 11.45 hrs, Volume=	4,813 cf	
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 94.94' @ 12.36 hrs Surf.Area= 2,062 sf Storage= 3,928 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 523.5 min (1,335.6 - 812.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	92.00'	1,878 cf	44.25'W x 46.34'L x 3.50'H Field A
			7,176 cf Overall - 2,481 cf Embedded = 4,696 cf x 40.0% Voids
#2A	92.50'	2,481 cf	ADS_StormTech SC-740 +Cap x 54 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			54 Chambers in 9 Rows
#3	92.50'	861 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		5,220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
92.50	12	0	0
96.90	12	53	53
97.00	110	6	59
97.50	3,100	803	861

Device	Routing	Invert	Outlet Devices
#1	Primary	96.90'	2.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	·		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32
#2	Discarded	92.00'	1.020 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 11.45 hrs HW=92.50' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=92.00' TW=0.00' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Page 25

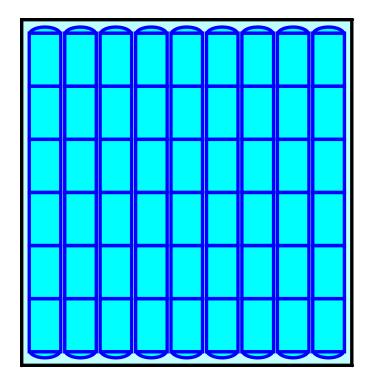
Pond P-1: Stormtech - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

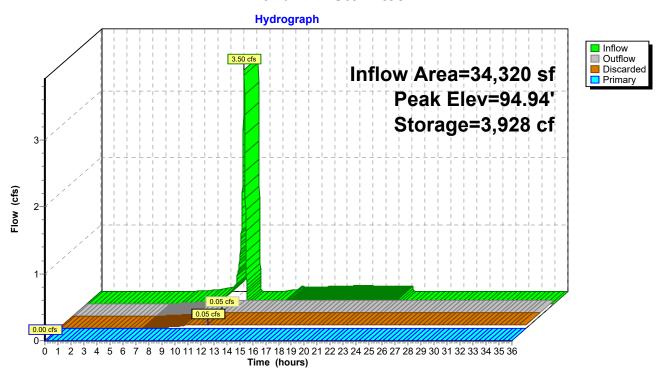
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

6 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 44.34' Row Length +12.0" End Stone x 2 = 46.34' Base Length


9 Rows x 51.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 44.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

54 Chambers x 45.9 cf = 2,480.8 cf Chamber Storage

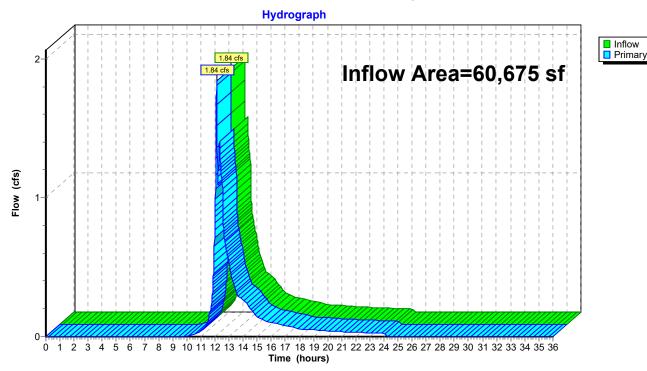
7,176.4 cf Field - 2,480.8 cf Chambers = 4,695.6 cf Stone x 40.0% Voids = 1,878.3 cf Stone Storage


Chamber Storage + Stone Storage = 4,359.0 cf = 0.100 af Overall Storage Efficiency = 60.7% Overall System Size = 46.34' x 44.25' x 3.50'

54 Chambers 265.8 cy Field 173.9 cy Stone

Pond P-1: Stormtech

Summary for Link DP1: Front Entry


Inflow Area = 60,675 sf, 64.00% Impervious, Inflow Depth = 1.61" for 10-Year event

Inflow = 1.84 cfs @ 12.13 hrs, Volume= 8,158 cf

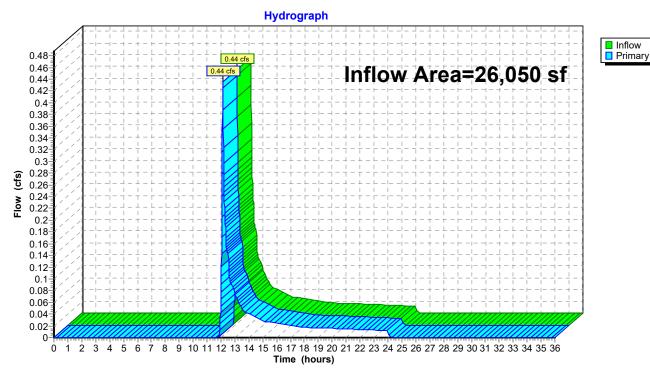
Primary = 1.84 cfs @ 12.13 hrs, Volume= 8,158 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP1: Front Entry

Page 28

Summary for Link DP2: Back Patio


26,050 sf, 29.01% Impervious, Inflow Depth = 0.68" for 10-Year event Inflow Area =

Inflow 0.44 cfs @ 12.14 hrs, Volume= 1,474 cf

0.44 cfs @ 12.14 hrs, Volume= Primary 1,474 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP2: Back Patio

NOAA 24-hr C 25-Year Rainfall=6.39"

Prepared by VHB HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC Printed 9/17/2020

Page 29

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: Front Entry

Runoff Area=34,320 sf 72.93% Impervious Runoff Depth=4.35"

Tc=5.0 min CN=82 Runoff=4.58 cfs 12,433 cf

Subcatchment11: Front EntryRunoff Area=26,355 sf 52.38% Impervious Runoff Depth=3.12"

Tc=5.0 min CN=70 Runoff=2.61 cfs 6,848 cf

Subcatchment20: Back Patio Runoff Area=22,550 sf 18.00% Impervious Runoff Depth=1.34"

Tc=5.0 min CN=50 Runoff=0.86 cfs 2,517 cf

Subcatchment21: Permeable Pavers Runoff Area=3,500 sf 100.00% Impervious Runoff Depth=6.15"

Tc=5.0 min CN=98 Runoff=0.57 cfs 1,794 cf

Pond 1P: Diversion CB Peak Elev=95.75' Inflow=4.58 cfs 12,433 cf

Primary=4.16 cfs 6,296 cf Secondary=2.94 cfs 6,137 cf Outflow=4.58 cfs 12,433 cf

Pond 2P: Permeable Sidewalk Peak Elev=98.82' Storage=445 cf Inflow=0.57 cfs 1,794 cf

Discarded=0.08 cfs 1,766 cf Primary=0.01 cfs 28 cf Secondary=0.00 cfs 0 cf Outflow=0.10 cfs 1,794 cf

Pond P-1: Stormtech Peak Elev=97.03' Storage=4,425 cf Inflow=4.16 cfs 6,296 cf

Discarded=0.06 cfs 4,979 cf Primary=0.25 cfs 17 cf Outflow=0.31 cfs 4,995 cf

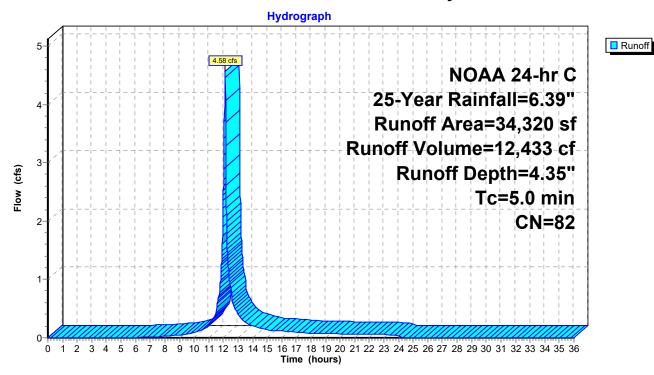
Link DP1: Front Entry Inflow=4.88 cfs 13,001 cf

Primary=4.88 cfs 13,001 cf

Link DP2: Back Patio Inflow=0.86 cfs 2,545 cf

Primary=0.86 cfs 2,545 cf

Total Runoff Area = 86,725 sf Runoff Volume = 23,592 cf Average Runoff Depth = 3.26" 46.51% Pervious = 40,332 sf 53.49% Impervious = 46,393 sf

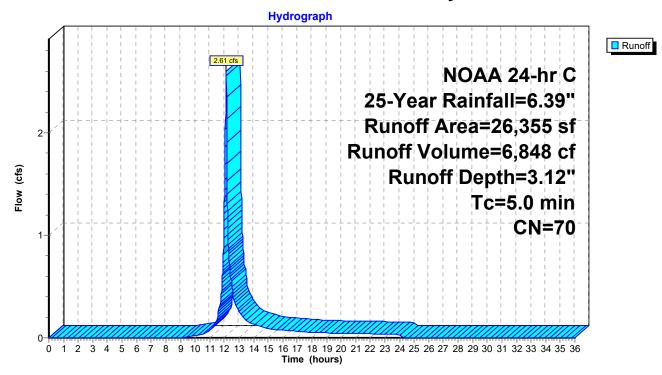

Summary for Subcatchment 10: Front Entry

Runoff = 4.58 cfs @ 12.12 hrs, Volume= 12,433 cf, Depth= 4.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 25-Year Rainfall=6.39"

A	rea (sf)	CN	Description			
	25,030	98	Paved park	ing, HSG A	4	
	9,290	39	>75% Ġras	s cover, Go	ood, HSG A	
	34,320	82	Weighted Average			
	9,290		27.07% Pervious Area			
	25,030		72.93% lmp	ervious Ar	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description	
5.0	, /	, ,	•	, ,	Direct Entry,	

Subcatchment 10: Front Entry

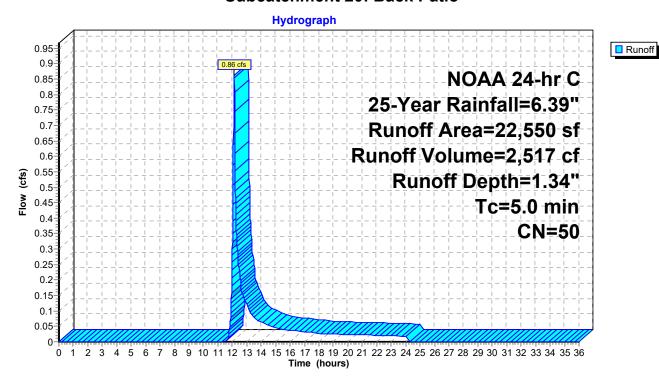

Summary for Subcatchment 11: Front Entry

Runoff = 2.61 cfs @ 12.13 hrs, Volume= 6,848 cf, Depth= 3.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 25-Year Rainfall=6.39"

A	rea (sf)	CN	Description			
	13,805	98	Paved park	ing, HSG A	A	
	12,550	39	>75% Gras	s cover, Go	ood, HSG A	
	26,355	70	Weighted Average			
	12,550		47.62% Pervious Area			
	13,805		52.38% Impervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description	
5.0					Direct Entry,	

Subcatchment 11: Front Entry


Summary for Subcatchment 20: Back Patio

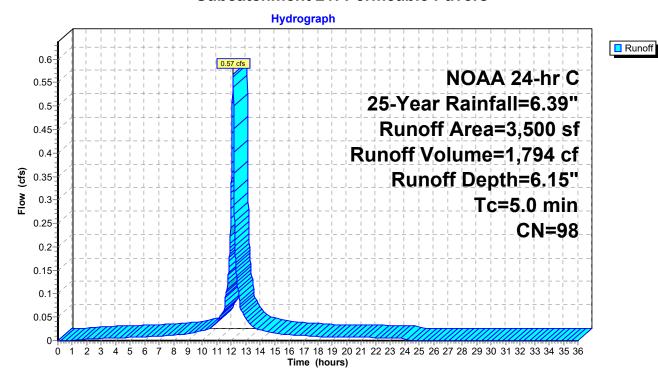
Runoff 0.86 cfs @ 12.13 hrs, Volume= 2,517 cf, Depth= 1.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 25-Year Rainfall=6.39"

Area (s	f) CN	Description	Description			
4,05	8 98	Paved park	ing, HSG A	A		
18,49	2 39	>75% Gras	s cover, Go	ood, HSG A		
22,55	50 50	Weighted A	Weighted Average			
18,49	92	82.00% Pei	82.00% Pervious Area			
4,05	58	18.00% Impervious Area				
Tc Len (min) (fe	•	,	Capacity (cfs)	Description		
5.0				Direct Entry,		

Subcatchment 20: Back Patio

Page 33


Summary for Subcatchment 21: Permeable Pavers

Runoff = 0.57 cfs @ 12.12 hrs, Volume= 1,794 cf, Depth= 6.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 25-Year Rainfall=6.39"

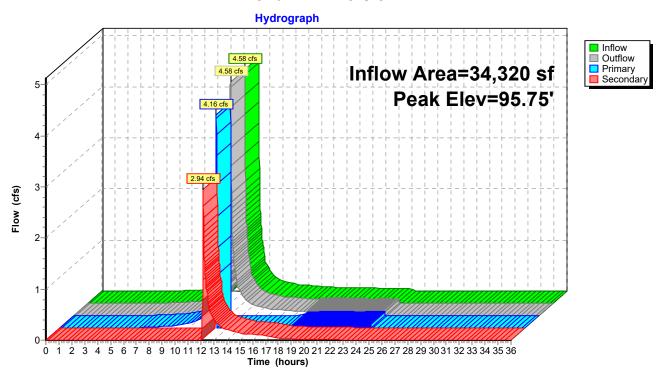
_	Α	rea (sf)	CN [Description				
*		3,500	98 F	Permeable				
_		3,500	100.00% Impervious Area					
		Length	Slope	,		Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	5.0					Direct Entry,		

Subcatchment 21: Permeable Pavers

Page 34

Summary for Pond 1P: Diversion CB

Inflow Area =	34,320 sf,	72.93% Impervious, Inflow	Depth = 4.35 "	for 25-Year event
Inflow =	4.58 cfs @	12.12 hrs, Volume=	12,433 cf	
Outflow =	4.58 cfs @	12.12 hrs, Volume=	12,433 cf, At	ten= 0%, Lag= 0.0 min
Primary =	4.16 cfs @	12.10 hrs, Volume=	6,296 cf	
Secondary =	2.94 cfs @	12.18 hrs, Volume=	6,137 cf	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 95.75' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	92.60'	24.0" Round Culvert
	•		L= 10.0' RCP, sq.cut end projecting, Ke= 0.500
			Inlet / Outlet Invert= 92.60' / 92.50' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Secondary	94.40'	10.0" Round Culvert
			L= 5.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 94.40' / 94.30' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.55 sf

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=94.60' TW=94.65' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs)

Secondary OutFlow Max=2.87 cfs @ 12.18 hrs HW=95.72' TW=0.00' (Dynamic Tailwater) 2=Culvert (Barrel Controls 2.87 cfs @ 5.27 fps)

Pond 1P: Diversion CB

Page 35

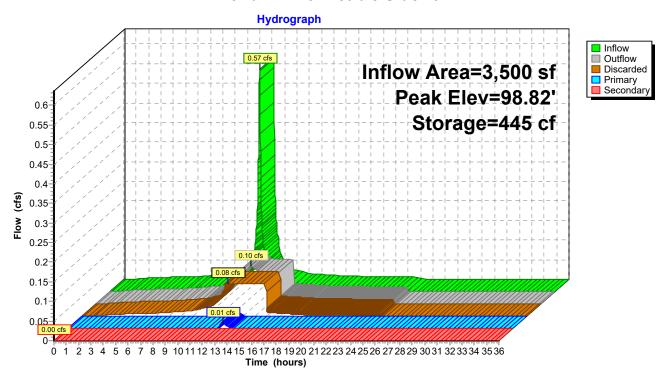
Summary for Pond 2P: Permeable Sidewalk

Inflow Area =	3,500 sf,100.00% Impervious, Inflow I	Depth = 6.15" for 25-Year event
Inflow =	0.57 cfs @ 12.12 hrs, Volume=	1,794 cf
Outflow =	0.10 cfs @ 12.55 hrs, Volume=	1,794 cf, Atten= 83%, Lag= 25.7 min
Discarded =	0.08 cfs @ 11.80 hrs, Volume=	1,766 cf
Primary =	0.01 cfs @ 12.55 hrs, Volume=	28 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 98.82' @ 12.55 hrs Surf.Area= 3,500 sf Storage= 445 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 27.2 min (771.2 - 744.0)


escription
e (Prismatic)Listed below (Recalc)
verall x 40.0% Voids
Prismatic)Listed below (Recalc) -Impervious
able Storage
Cum.Store
(cubic-feet)
0
4,375
Cum.Store
(cubic-feet)
0
875
Itration over Surface area
Ivert L= 10.0' RCP, sq.cut end projecting, Ke= 0.500
ert= 98.75' / 98.40' S= 0.0350 '/' Cc= 0.900
Area= 0.20 sf
)' breadth Broad-Crested Rectangular Weir
0 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
4.00 4.50 5.00 5.50
2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66
2.76 2.79 2.88 3.07 3.32

Discarded OutFlow Max=0.08 cfs @ 11.80 hrs HW=98.52' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.01 cfs @ 12.55 hrs HW=98.82' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.01 cfs @ 0.89 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=98.50' TW=0.00' (Dynamic Tailwater) 3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 2P: Permeable Sidewalk

Page 37

Summary for Pond P-1: Stormtech

Inflow Area = 34,320 sf, 72.93% Impervious, Inflow Depth = 2.20" for 25-Year event
Inflow = 4.16 cfs @ 12.10 hrs, Volume= 6,296 cf
Outflow = 0.31 cfs @ 12.18 hrs, Volume= 4,995 cf, Atten= 93%, Lag= 5.1 min
Discarded = 0.06 cfs @ 12.18 hrs, Volume= 4,979 cf
Primary = 0.25 cfs @ 12.18 hrs, Volume= 17 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 97.03' @ 12.18 hrs Surf.Area= 2,367 sf Storage= 4,425 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 522.9 min (1,305.2 - 782.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	92.00'	1,878 cf	44.25'W x 46.34'L x 3.50'H Field A
			7,176 cf Overall - 2,481 cf Embedded = 4,696 cf x 40.0% Voids
#2A	92.50'	2,481 cf	ADS_StormTech SC-740 +Cap x 54 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			54 Chambers in 9 Rows
#3	92.50'	861 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		5,220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
92.50	12	0	0
96.90	12	53	53
97.00	110	6	59
97.50	3,100	803	861

Device	Routing	Invert	Outlet Devices
#1	Primary	96.90'	2.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	·		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32
#2	Discarded	92.00'	1.020 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.06 cfs @ 12.18 hrs HW=97.03' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.24 cfs @ 12.18 hrs HW=97.03' TW=0.00' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 0.24 cfs @ 0.92 fps)

Page 38

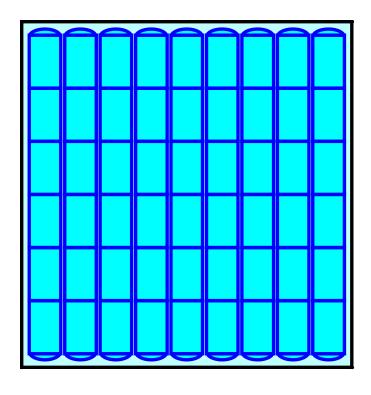
Pond P-1: Stormtech - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

6 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 44.34' Row Length +12.0" End Stone x 2 = 46.34' Base Length


9 Rows x 51.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 44.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

54 Chambers x 45.9 cf = 2,480.8 cf Chamber Storage

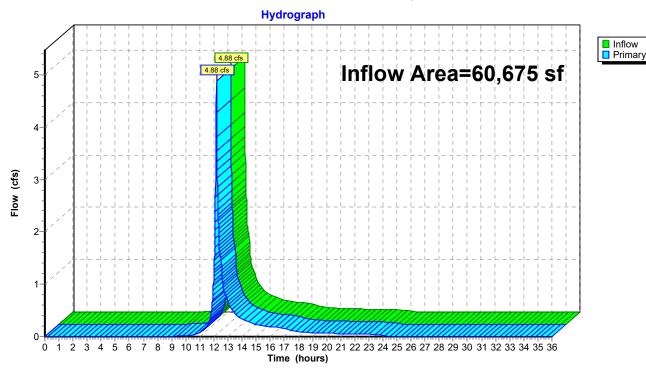
7,176.4 cf Field - 2,480.8 cf Chambers = 4,695.6 cf Stone x 40.0% Voids = 1,878.3 cf Stone Storage


Chamber Storage + Stone Storage = 4,359.0 cf = 0.100 af Overall Storage Efficiency = 60.7% Overall System Size = 46.34' x 44.25' x 3.50'

54 Chambers 265.8 cy Field 173.9 cy Stone

Pond P-1: Stormtech

Summary for Link DP1: Front Entry


Inflow Area = 60,675 sf, 64.00% Impervious, Inflow Depth = 2.57" for 25-Year event

Inflow = 4.88 cfs @ 12.18 hrs, Volume= 13,001 cf

Primary = 4.88 cfs @ 12.18 hrs, Volume= 13,001 cf, Atten= 0%, Lag= 0.0 min

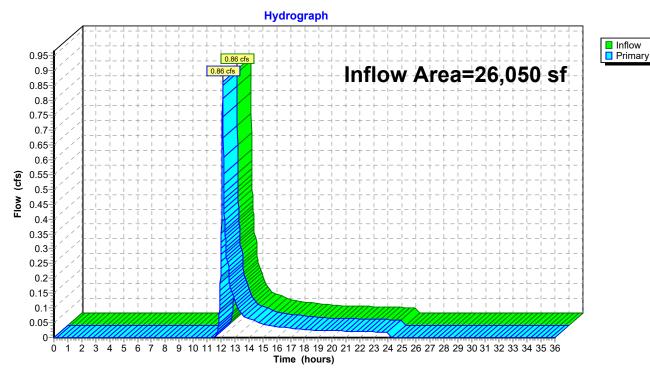
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP1: Front Entry

Printed 9/17/2020

Page 41

Summary for Link DP2: Back Patio


Inflow Area = 26,050 sf, 29.01% Impervious, Inflow Depth = 1.17" for 25-Year event

Inflow 0.86 cfs @ 12.13 hrs, Volume= 2,545 cf

0.86 cfs @ 12.13 hrs, Volume= Primary 2,545 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP2: Back Patio

NOAA 24-hr C 100-Year Rainfall=8.21"

Prepared by VHB HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC Printed 9/17/2020

Page 42

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: Front Entry Runoff Area=34,320 sf 72.93% Impervious Runoff Depth=6.06"

Tc=5.0 min CN=82 Runoff=6.26 cfs 17,330 cf

Subcatchment11: Front Entry Runoff Area=26,355 sf 52.38% Impervious Runoff Depth=4.65"

Tc=5.0 min CN=70 Runoff=3.85 cfs 10,202 cf

Subcatchment20: Back Patio Runoff Area=22,550 sf 18.00% Impervious Runoff Depth=2.38"

Tc=5.0 min CN=50 Runoff=1.65 cfs 4,471 cf

Subcatchment21: Permeable Pavers Runoff Area=3,500 sf 100.00% Impervious Runoff Depth=7.97"

Tc=5.0 min CN=98 Runoff=0.73 cfs 2,325 cf

Pond 1P: Diversion CB Peak Elev=97.19' Inflow=6.26 cfs 17,330 cf

Primary=2.68 cfs 6,882 cf Secondary=5.05 cfs 10,449 cf Outflow=6.26 cfs 17,331 cf

Pond 2P: Permeable Sidewalk Peak Elev=98.92' Storage=585 cf Inflow=0.73 cfs 2,325 cf

Discarded=0.08 cfs 2,116 cf Primary=0.08 cfs 210 cf Secondary=0.00 cfs 0 cf Outflow=0.16 cfs 2,326 cf

Pond P-1: Stormtech Peak Elev=97.18' Storage=4,540 cf Inflow=2.68 cfs 6,882 cf

Discarded=0.08 cfs 5,210 cf Primary=0.78 cfs 331 cf Outflow=0.86 cfs 5,540 cf

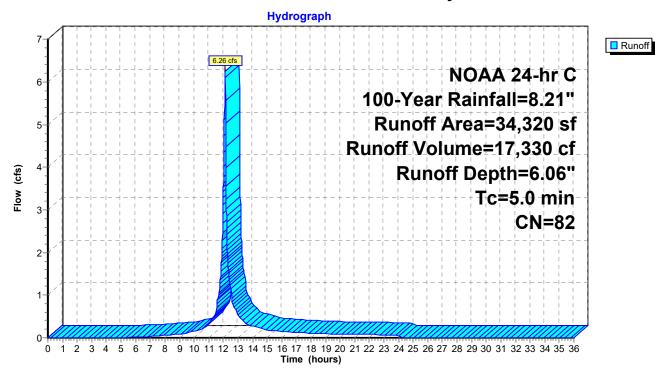
Link DP1: Front Entry Inflow=9.63 cfs 20,981 cf

Primary=9.63 cfs 20,981 cf

Link DP2: Back Patio Inflow=1.66 cfs 4,681 cf

Primary=1.66 cfs 4,681 cf

Total Runoff Area = 86,725 sf Runoff Volume = 34,327 cf Average Runoff Depth = 4.75" 46.51% Pervious = 40,332 sf 53.49% Impervious = 46,393 sf

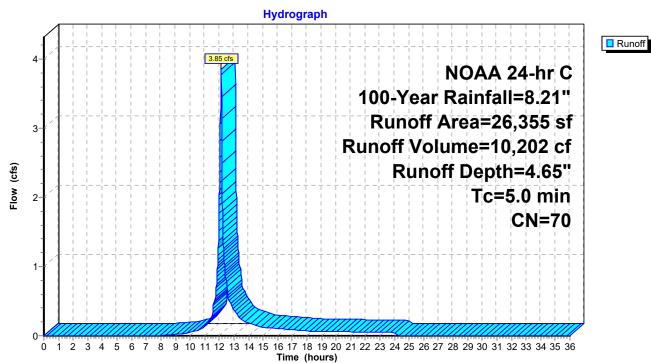

Summary for Subcatchment 10: Front Entry

Runoff = 6.26 cfs @ 12.12 hrs, Volume= 17,330 cf, Depth= 6.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

A	rea (sf)	CN	Description			
	25,030	98	Paved park	ing, HSG A	4	
	9,290	39	>75% Ġras	s cover, Go	ood, HSG A	
	34,320	82	Weighted Average			
	9,290		27.07% Pervious Area			
	25,030		72.93% lmp	ervious Ar	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description	
5.0	, /	, ,	•	, ,	Direct Entry,	

Subcatchment 10: Front Entry

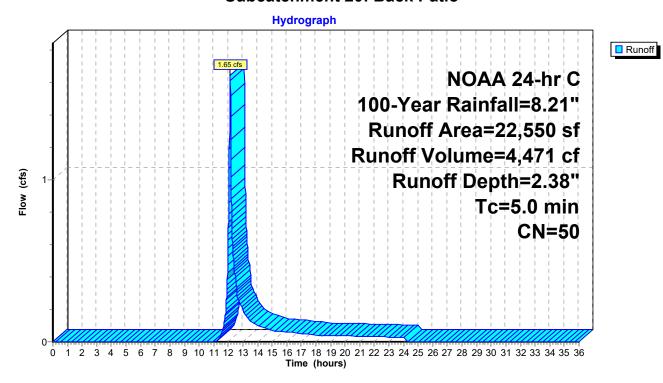

Summary for Subcatchment 11: Front Entry

Runoff = 3.85 cfs @ 12.12 hrs, Volume= 10,202 cf, Depth= 4.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

A	rea (sf)	CN	Description				
	13,805	98	Paved park	ing, HSG A	A		
	12,550	39	>75% Gras	s cover, Go	ood, HSG A		
	26,355	70	70 Weighted Average				
	12,550	,550 47.62% Pervious Area					
	13,805	:	52.38% Imp	ervious Ar	rea		
т.	1 41-	Ol	\/-l:\tage:	Oit.	December		
Tc	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Subcatchment 11: Front Entry


Summary for Subcatchment 20: Back Patio

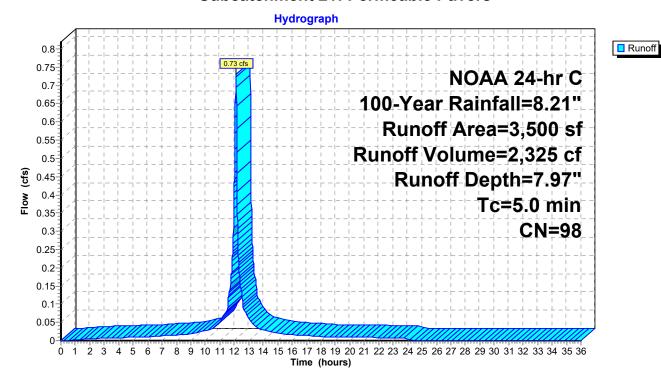
Runoff = 1.65 cfs @ 12.13 hrs, Volume= 4,471 cf, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

Area (s	f) CN	Description				
4,05	8 98	Paved park	ing, HSG A	A		
18,49	92 39	>75% Gras	s cover, Go	ood, HSG A		
22,55	50 50	Weighted A	verage			
18,49	92	82.00% Pei	rvious Area	a		
4,05	58	18.00% Impervious Area				
Tc Len (min) (fe	•	,	Capacity (cfs)	Description		
5.0				Direct Entry,		

Subcatchment 20: Back Patio

Page 46


Summary for Subcatchment 21: Permeable Pavers

Runoff = 0.73 cfs @ 12.12 hrs, Volume= 2,325 cf, Depth= 7.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

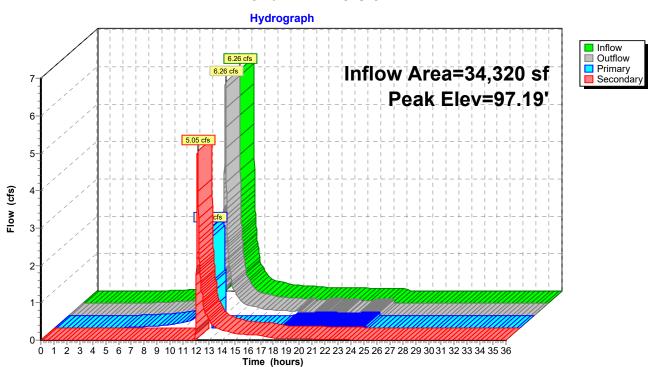
_	Α	rea (sf)	CN I	Description		
*		3,500	98	Permeable		
		3,500		100.00% Im	npervious A	Area
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 21: Permeable Pavers

Page 47

Summary for Pond 1P: Diversion CB

Inflow Area =	34,320 sf,	72.93% Impervious, Inf	flow Depth = 6.06"	for 100-Year event
Inflow =	6.26 cfs @	12.12 hrs, Volume=	17,330 cf	
Outflow =	6.26 cfs @	12.12 hrs, Volume=	17,331 cf, Att	ten= 0%, Lag= 0.0 min
Primary =	2.68 cfs @	11.98 hrs, Volume=	6,882 cf	_
Secondary =	5.05 cfs @	12.15 hrs, Volume=	10,449 cf	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 97.19' @ 12.15 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	92.60'	24.0" Round Culvert
	•		L= 10.0' RCP, sq.cut end projecting, Ke= 0.500
			Inlet / Outlet Invert= 92.60' / 92.50' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Secondary	94.40'	10.0" Round Culvert
			L= 5.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 94.40' / 94.30' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.55 sf

Primary OutFlow Max=0.00 cfs @ 11.98 hrs HW=94.76' TW=94.82' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs)

Secondary OutFlow Max=5.05 cfs @ 12.15 hrs HW=97.19' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 5.05 cfs @ 9.26 fps)

Pond 1P: Diversion CB

HydroCAD® 10.00-25 s/n 01038 © 2019 HydroCAD Software Solutions LLC

Page 48

Summary for Pond 2P: Permeable Sidewalk

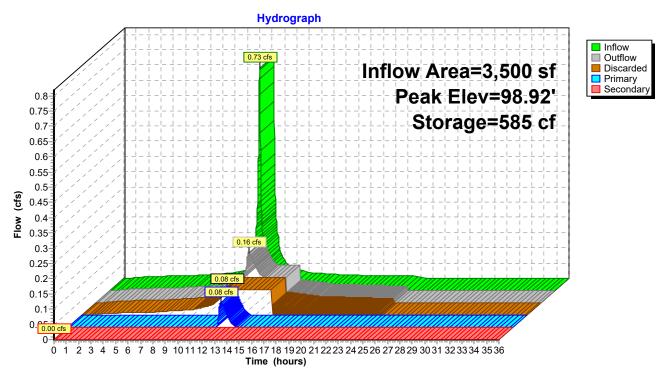
Inflow Area =	3,500 sf,100.00% Impervious, Inflow D	Depth = 7.97" for 100-Year event
Inflow =	0.73 cfs @ 12.12 hrs, Volume=	2,325 cf
Outflow =	0.16 cfs @ 12.38 hrs, Volume=	2,326 cf, Atten= 78%, Lag= 15.6 min
Discarded =	0.08 cfs @ 11.69 hrs, Volume=	2,116 cf
Primary =	0.08 cfs @ 12.38 hrs, Volume=	210 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 98.92' @ 12.38 hrs Surf.Area= 3,500 sf Storage= 585 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 30.3 min (770.8 - 740.5)

Volume	Invert	Avail.Storage	Storage Description
#1	98.50'	1,750 cf	Permeable (Prismatic)Listed below (Recalc)
			4,375 cf Overall x 40.0% Voids
#2	99.75'	875 cf	Surface (Prismatic)Listed below (Recalc) -Impervious
		2.625 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
98.50	3,500	0	0
99.75	3,500	4,375	4,375
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
99.75	3,500	0	0
100.00	3,500	875	875


Device	Routing	Invert	Outlet Devices
#1	Discarded	98.50'	1.020 in/hr Exfiltration over Surface area
#2	Primary	98.75'	6.0" Round Culvert L= 10.0' RCP, sq.cut end projecting, Ke= 0.500
			Inlet / Outlet Invert= 98.75' / 98.40' S= 0.0350 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf
#3	Secondary	99.95'	20.0' long x 4.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66
			2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Discarded OutFlow Max=0.08 cfs @ 11.69 hrs HW=98.52' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.08 cfs @ 12.38 hrs HW=98.92' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.08 cfs @ 1.40 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=98.50' TW=0.00' (Dynamic Tailwater) 3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 2P: Permeable Sidewalk

Printed 9/17/2020 Page 50

Summary for Pond P-1: Stormtech

Inflow Area =	34,320 sf, 72.93% Impervious, Inflow D	Depth = 2.41" for 100-Year event
Inflow =	2.68 cfs @ 11.98 hrs, Volume=	6,882 cf
Outflow =	0.86 cfs @ 12.14 hrs, Volume=	5,540 cf, Atten= 68%, Lag= 9.7 min
Discarded =	0.08 cfs @ 12.14 hrs, Volume=	5,210 cf
Primary =	0.78 cfs @ 12.14 hrs, Volume=	331 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 97.18' @ 12.14 hrs Surf.Area= 3,265 sf Storage= 4,540 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 479.8 min (1,236.3 - 756.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	92.00'	1,878 cf	44.25'W x 46.34'L x 3.50'H Field A
			7,176 cf Overall - 2,481 cf Embedded = 4,696 cf x 40.0% Voids
#2A	92.50'	2,481 cf	ADS_StormTech SC-740 +Cap x 54 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			54 Chambers in 9 Rows
#3	92.50'	861 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		5,220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
92.50	12	0	0
96.90	12	53	53
97.00	110	6	59
97.50	3,100	803	861

Device	Routing	Invert	Outlet Devices		
#1	Primary	96.90'	2.0' long x 2.0' breadth Broad-Crested Rectangular Weir		
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00		
			2.50 3.00 3.50		
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88		
			2.85 3.07 3.20 3.32		
#2	Discarded	92.00'	1.020 in/hr Exfiltration over Surface area		

Discarded OutFlow Max=0.08 cfs @ 12.14 hrs HW=97.18' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.78 cfs @ 12.14 hrs HW=97.18' TW=0.00' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 0.78 cfs @ 1.37 fps)

Page 51

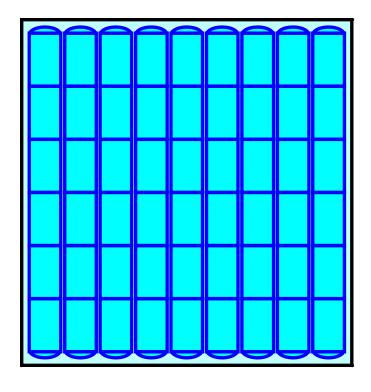
Pond P-1: Stormtech - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

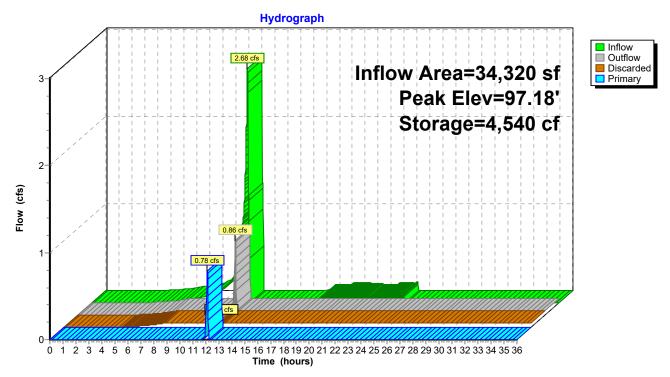
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

6 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 44.34' Row Length +12.0" End Stone x 2 = 46.34' Base Length


9 Rows x 51.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 44.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

54 Chambers x 45.9 cf = 2,480.8 cf Chamber Storage

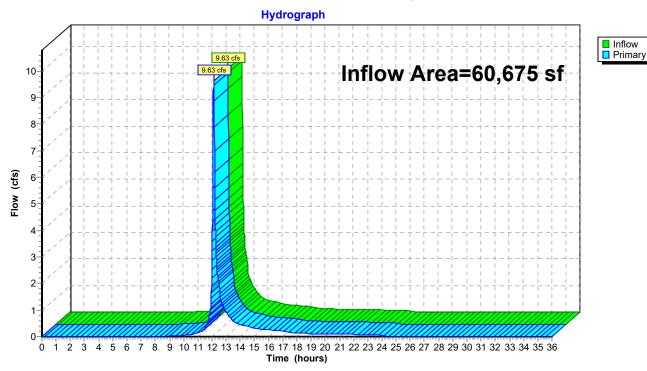
7,176.4 cf Field - 2,480.8 cf Chambers = 4,695.6 cf Stone x 40.0% Voids = 1,878.3 cf Stone Storage


Chamber Storage + Stone Storage = 4,359.0 cf = 0.100 af Overall Storage Efficiency = 60.7% Overall System Size = 46.34' x 44.25' x 3.50'

54 Chambers 265.8 cy Field 173.9 cy Stone

Pond P-1: Stormtech

Summary for Link DP1: Front Entry


Inflow Area = 60,675 sf, 64.00% Impervious, Inflow Depth = 4.15" for 100-Year event

Inflow = 9.63 cfs @ 12.13 hrs, Volume= 20,981 cf

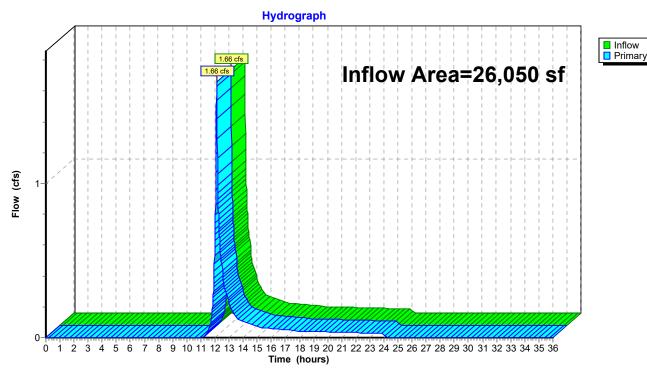
Primary = 9.63 cfs @ 12.13 hrs, Volume= 20,981 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP1: Front Entry

Page 54

Summary for Link DP2: Back Patio


26,050 sf, 29.01% Impervious, Inflow Depth = 2.16" for 100-Year event Inflow Area =

Inflow 1.66 cfs @ 12.13 hrs, Volume= 4,681 cf

1.66 cfs @ 12.13 hrs, Volume= Primary 4,681 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link DP2: Back Patio

Long-Term Pollution Prevention Plan

This Long-Term Pollution Prevention Plan has been developed to establish site management practices that improve the quality of stormwater discharges from the Project.

Description of Pollutant Sources

The project contains parking and drive areas that will experience high volume traffic that will potentially be a pollutant source.

Pollutant Control Approach

Maintenance of Pavement Systems

Standard Asphalt Pavement

Regular maintenance of pavement surfaces will prevent pollutants such as oil and grease, trash, and sediments from entering the stormwater management system. The following practices should be performed:

- > Sweep or vacuum asphalt pavement areas [semi-annually, annually, monthly, etc] with a commercial cleaning unit and dispose of removed material.
- Check loading docks and dumpster areas frequently for spillage and/or pavement staining and clean as necessary
- ➤ Routinely pick up and remove litter from the parking areas, islands, and perimeter landscaping.

Permeable Pavers

The primary maintenance requirement for permeable pavers is to clean the surface drainage voids. Fine debris and dirt accumulate in the drainage openings and reduce the pavement's flow capacity. Even though some irreplaceable loss in permeability should be expected over the paver's lifetime, one can increase the longevity of the system by following the maintenance schedule for vacuum sweeping and high-

pressure washing, restricting the area's use by heavy vehicles, limiting the use of deicing chemicals and sand, and implementing a stringent sediment control plan.

Preventing Clogging of Permeable Paver Surface Areas

- Patio areas and/or other areas with permeable pavers shall be cleaned annually with vacuums or washed with high pressure washers.
- ➤ Do not allow construction staging, soil/mulch storage, etc. on unprotected pavement surface.
- ➤ Maintain vegetated areas adjacent to areas with permeable pavers to prevent washout of soil onto surface.
- Do not apply any type of sealant to permeable pavers.

Inspecting the System

- > Inspect areas paved with permeable pavers monthly for the first three months after construction to ensure proper functioning and correct any areas that have settled or experienced washouts.
- Inspect areas paved with permeable pavers annually after initial three month period. Annual inspections should take place after large storms, when puddles will make any clogging obvious.

Maintenance of Vegetated Areas

Proper maintenance of vegetated areas can prevent the pollution of stormwater runoff by controlling the source of pollutants such as suspended sediments, excess nutrients, and chemicals from landscape care products. Practices that should be followed under the regular maintenance of the vegetated landscape include:

- Inspect planted areas on a semi-annual basis and remove any litter.
- ➤ Maintain planted areas adjacent to pavement to prevent soil washout.
- Immediately clean any soil deposited on pavement.
- ➤ Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming.
- Plant alternative mixture of grass species in the event of unsuccessful establishment.
- ➤ The grass vegetation should be cut to a height between three and four inches.
- ➤ Pesticide/Herbicide Usage No pesticides are to be used unless a single spot treatment is required for a specific control application.
- Fertilizer usage should be avoided. If deemed necessary, slow release fertilizer should be used. Fertilizer may be used to begin the establishment of vegetation in bare or damaged areas, but should not be applied on a regular basis unless necessary.
- Pet waste provision if applicable.

Management of Snow and Ice

Storage and Disposal

Snow shall be stockpiled on standard pavement surfaces so sand and salt may be swept in the spring or removed as snow melts and drains through the stormwater management system. Recommended locations for snow storage are shown on the attached Snow Storage Plan. Key practices for the safe storage and disposal of snow include:

- Under no circumstances shall snow be disposed or stored in wetland resource areas.
- ➤ Under no circumstances shall snow be disposed or stored in stormwater basins, ponds, rain gardens, swales, channels, or trenches.
- Do not stockpile snow on permeable pavement surfaces. Sand and grit in snow will clog pavement.
- ➤ Plow parking areas paved with permeable asphalt pavement carefully. Plow blades should be set approximately 1" higher than usual to avoid scarring the pavement and loosening material that could potentially clog surface pores.
- ➤ Do not apply abrasives such as sand or grit on or adjacent to permeable asphalt pavement.
- ➤ Monitor application rates of deicing materials on permeable pavement areas and reduce application rate accordingly. Permeable pavements tend to require less deicer per unit area because the water is not required to remain liquid over the entire parking surface area before discharge.
- Do not apply abrasives such as sand or grit on or adjacent to permeable pavers.
- Avoid plowing of areas with permeable pavers.

Salt and Deicing Chemicals

The amount of salt and deicing chemicals to be used on the site shall be reduced to the minimum amount needed to provide safe pedestrian and vehicle travel. The following practices should be followed to control the amount of salt and deicing materials that come into contact with stormwater runoff:

- Devices used for spreading salt and deicing chemicals should be capable of varying the rate of application based on the site specific conditions.
- Specific environmentally sensitive areas [engineer to identify] should be designated as no and/or reduced salt areas.
- ➤ Alternate materials [list alternate materials] should be used in place of standard salt and deicing chemicals in specific environmentally sensitive areas [engineer to identify].
- > Sand and salt should be stockpiled under covered storage facilities that prevent precipitation and adjacent runoff from coming in contact with the deicing materials

Spill Prevention and Response Plan

Spill prevention equipment and training will be provided by the property management company.

Initial Notification

In the event of a spill the facility and/or construction manager or supervisor will be notified immediately.

FACILITY MANAGER

Name:	Home Phone:	
Phone:	E-mail:	
CONSTRUCTION MANAGER		
Name:	Home Phone:	
Phone:	E-mail:	

The supervisor will first contact the Fire Department and then notify the Police Department, the Public Health Commission and the Conservation Commission. The Fire Department is ultimately responsible for matters of public health and safety and should be notified immediately.

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the main construction/facility office and readily accessible to all employees. A hazardous waste spill report shall be completed as necessary using the attached form.

Emergency Notification Phone Numbers

1.	FACILITY MAN	AGER					
	Name:		Home Phone:				
	Phone:		E-mail:				
	ALTERENATE						
	Name:		Home Phone:				
	Phone:	_	E-mail:				
2.	FIRE DEPARTME	ENT					
	Emergency:	911					
	Business:	(781) 270-1925					
	POLICE DEPART	MENT					
	Emergency:	911					
	Business:						
3.	CLEANUP CONTRACTOR:						
	Address:						
	Phone:						
4.		TS DEPARTMENT OF	ENVIRONMENTAL PROTECTION				
	Emergency:						
	Northeast Regi	on – Woburn Office:	-				
5.	NATIONAL RESP	ONSE CENTER					
	Phone:	(800) 424-8802					
	_						
	ALTERNATE: U.S. ENVIRONMENTAL PROTECTION AGENCY						
	Emergency:						
	Business:						
6.	CONSERVATION	COMMISSION					
	Contact:						
	Phone:						
	BOARD OF HEAI	LTH					
	Contact:						
	Phone:						

Hazardous Waste / Oil Spill Report

Date	1	ime		_ AM / PM						
Exact location (Transformer #)										
Type of equipment	Make		Size							
S / N Weather Conditions										
On or near Water										
	No									
Type of chemical/oil spilled										
Amount of chemical/oil spille	d									
Cause of Spill										
Measures taken to contain or clean up spill										
Amount of chemical/oil recovered Method										
Material collected as a result	of cleanup:									
Drums containing										
Drums containing										
Drums containing										
Location and method of debris disposal										
Name and address of any pe	erson, firm, or corporation	n suffering da	amages:							
Procedures, method, and precautions instituted to prevent a similar occurrence from recurring:										
Spill reported to General Offi	Tim	e	AM / PM							
Spill reported to DEP / National Response Center by										
DEP Date	Time	AM / PM	Inspector							
NRC Date	Time	AM / PM	Inspector							
Additional comments:										

Assessment - Initial Containment

The supervisor or manager will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. A list of recommended spill equipment to be kept on site is included on the following page.

Fire / Police Department	911
Municipality Health Department	
Municipality Conservation Commission:	

Emergency Response Equipment

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

Supplies		Recommended Suppliers
SORBENT PILLOWS/"PIGS"	2	http://www.newpig.com
SORBENT BOOM/SOCK	25 FEET	Item # KIT276 — mobile container with two pigs,
SORBENT PADS	50	26 feet of sock, 50 pads, and five pounds of
LITE-DRI® ABSORBENT	5	absorbent (or equivalent)
POUNDS		http://www.forestry-suppliers.com
SHOVEL	1	Item # 43210 — Manhole cover pick (or
PRY BAR	1	equivalent)
GOGGLES	1 PAIR	Item # 33934 — Shovel (or equivalent)
GLOVES – HEAVY	1 PAIR	Item # 90926 — Gloves (or equivalent)
		Item # 23334 — Goggles (or equivalent)

Stormwater Operation and Maintenance Plan

Project Information		
	Site	
	140 Kendrick Street Needham MA	
	Owner	
	Boston Properties 101 Federal Street Boston, MA 02110	
	Site Supervisor	
	Name:TBD	
	Telephone:	
	Cell phone:	

Description of Stormwater Maintenance Measures

The following Operation and Maintenance (O&M) program is proposed to ensure the continued effectiveness of the stormwater management system. Attached to this plan are a Stormwater Best Management Practices Checklist and Maintenance Figure for use during the long term operation and maintenance of the stormwater management system.

Catch Basins

- ➤ All catch basins shall be inspected and cleaned a minimum of at least once per year.
- > Sediment (if more than six inches deep) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations.
- ➤ Any structural damage or other indication of malfunction will be reported to the site manager and repaired as necessary
- During colder periods, the catch basin grates must be kept free of snow and ice.
- ➤ During warmer periods, the catch basin grates must be kept free of leaves, litter, sand, and debris.

Subsurface Infiltration System

- > The subsurface infiltration systems will be inspected at least once each year by removing the manhole/access port covers and determining the thickness of sediment that has accumulated in the sediment removal row.
- ➤ If sediment is more than six inches deep, it must be suspended via flushing with clean water and removed using a vactor truck.
- ➤ Manufacturer's specifications and instructions for cleaning the sediment removal row is provided as an attachment to this section.
- ➤ Emergency overflow pipes will be examined at least once each year and verified that no blockage has occurred.
- System will be observed after rainfalls to see if it is properly draining.

Inspection & Maintenance

Step 1) Inspect Isolator Row for Sediment

- A. Inspection ports (if present)
 - A.1. Remove/open lid on Nyloplast inline drain
 - A.2. Remove and clean Flexstorm filter (if installed)
 - A.3. Using a flashlight and stadia rod, measure depth of sediment and record on maintenance log

- A.4. Lower a camera into Isolator Row for visual inspection of sediment levels (optional)
- A.5. If sediment is at, or above, 3" proceed to Step 2. If not, proceed to Step 3
- Step 2) Clean out Isolator Row using the JetVac process
 - A. A fixed culvert cleaning nozzle with rear facing spread of 45" (1.1m) or more is preferred.
 - B. Apply multiple passes of JetVac until backflush water is clean
 - C. Vacuum structure sump as required

Permeable Pavers

The primary maintenance requirement for permeable pavers is to clean the surface drainage voids. Fine debris and dirt accumulate in the drainage openings and reduce the pavement's flow capacity. Even though some irreplaceable loss in permeability should be expected over the paver's lifetime, one can increase the longevity of the system by following the maintenance schedule for vacuum sweeping and high-pressure washing, restricting the area's use by heavy vehicles, limiting the use of de-icing chemicals and sand, and implementing a stringent sediment control plan.

Preventing Clogging of Permeable Paver Surface Areas

- ➤ Patio areas and/or other areas with permeable pavers shall be cleaned annually with vacuums or washed with high pressure washers.
- ➤ Do not allow construction staging, soil/mulch storage, etc. on unprotected pavement surface.
- ➤ Maintain vegetated areas adjacent to areas with permeable pavers to prevent washout of soil onto surface.
- ➤ Do not apply any type of sealant to permeable pavers.

Inspecting the System

- ➤ Inspect areas paved with permeable pavers monthly for the first three months after construction to ensure proper functioning and correct any areas that have settled or experienced washouts.
- ➤ Inspect areas paved with permeable pavers annually after initial three month period. Annual inspections should take place after large storms, when puddles will make any clogging obvious.

Stormwater Outfalls

- > Inspect outfall locations monthly for the first three months after construction to ensure proper functioning and correct any areas that have settled or experienced washouts.
- > Inspect outfalls annually after initial three month period.

- ➤ Annual inspections should be supplemented after large storms, when washouts may occur.
- ➤ Maintain vegetation around outfalls to prevent blockages at the outfall.
- ➤ Maintain rip rap pad below each outfall and replace any washouts.
- ➤ Remove and dispose of any trash or debris at the outfall.

Roof Drain Leaders

- > Perform routine roof inspections quarterly.
- ➤ Keep roofs clean and free of debris.
- ➤ Keep roof drainage systems clear.
- ➤ Keep roof access limited to authorized personnel.
- ➤ Clean inlets draining to the subsurface bed twice per year as necessary.

sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or flood/ways have been determined, users are nerousged to consult the Flood Profiles and Floodway Data and/or Summay of Sillwater Elevations tables contained within the Flood Insurance Study (FIs) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent curded whole-tool elevations. These BFEs are inlended for flood insurance rating purposes only and should not be used as the sole source of flood devarion information. Accordingly, those devarion control and presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0" North American Verlido Datum of 1886 (NAVD SB). Users of this FRM should be aware that coastal flood elevations are also provided in the Summary of Sillwarer Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Sillwarer Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood insurance Program. Floodway widths and other perintent floodway data are provided in the Flood insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Massachusetts State Plane Manianad Zone (FIPS 22 one 2001). The horizontal datum was NAD 33, GRS 1980 soblered. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdictions boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are reteremed to the forth American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical atlant. For infrontation regarding conversions between the National Goodster Vertical Datum of 1959 and the North American Vertical Datum of 1986, visit for the National Geodetic Survey was wobsite at https://www.mas.noaa.agov.or.comfact the National Geodetic Survey at the following address.

NGS Information Services NOAA N/NGSTS. NATURATION NOSTS. National Geodetic Survey SSMC-3, #9202 113 Fast-Veas Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from digital orthophotography, Base map files were provided in digital format by Massachusetts Geographic information Systems (MassGS), Ortho imagery was produced at a scale of 1;5,000. Aerial photography is dated April 2005.

The **profile baselines** depicted on this map represent the hydraulic modeling baselines that maderly the flood profiles in the FIS report. As a result of improved topographic data, the **profile baseline**, in some cases, may devate significantly from the channel conferine or appear outside the SFHA.

Based on updated topographic information, this map reflects more detailed and up-to-deat stream reharmal condigurations and flootpain defineations than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Porties and Floodbaw Data atlable for multiles streams in the Flood insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map. Also, the road to Reodoglan relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publishin. Because changes due to annexations or dearnexations may have cocurbication. Because changes due to annexations or dearnexations may have community official after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels, community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community.

For information on available products associated with this FIRM visit the Map Service Center (MSC) weekles at http://www.clena.gov. Available products may include previously issued Letters of Map Change, a Product insurance Study Report, andro digital vasions of this map, Many of these products can be ordered on obtained dietedly from the MSC website.

If you have questions about this map, how to order products or the National Flood insurance Program in general, please call the FENA Map information eXchange (FMIX) at 1-477-FENA-MAP (-1877-336-2627) or visit the FENA website at http://www.lena.gov/businessnifp.

71° 13' 0 42° 18' 45" JOINS PANEL 0036 893000 M-895000 M 894000 M SITE LOCATION

Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); avera bepths determined. For areas of alluvial fan flooding, velocities also deter Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevadetermined. way is the channel of a stream plus any adjacent floodplain areas that must be ment so that the 1% annual chance flood can be carried without substantial in 1000-meter ticks: Massachusetts State Plane Mainlan (FIPS Zone 2001), Lambert Conformal Conic projectio 1000-meter Universal Transverse Mercator grid values Bench mark (see explanation in Notes to Users spane)
River Mile
MAP REPOSITORIES
Refer to Map Repositories list on Map index COASTAL BARRIER RESOURCES SYSTEM (CBRS) Areas of 0.2% annual chance flood; areas of 1% annual chan average depths of less than 1 foot or with drainage areas less mile; and areas protected by levees from 1% annual chance fi For community map revision history prior to countywide mapping, refer to the Map History table located in the Flood Insurance Study report for this jurisdik ned to be outside the 0.2% annual chance flood hazards are undetermined, but boss Flood Elevation value where unifor EFFECTIVE DATE OF COUNTYWIDI FLOOD INSURANCE RATE MAP July 17, 2012 OTHERWISE PROTECTED AREAS (OPAS) To determine if flood insurance is available in this community, cor or call the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500 FLOODWAY AREAS IN ZONE AE OTHER FLOOD AREAS OTHER AREAS) (A) Trans 45° 02' 08", 93° 02' 12" ~ 513~~ (EL 987)

PANEL 0037E

FIRM FLOOD INSURANCE RATE MAP

NORFOLK COUNTY, MASSACHUSETTS (ALL JURISDICTIONS)

PANEL 37 OF 430 (SEE MAP INDEX FOR FIRM PANEL LAYOUT)

MAP NUMBER

42° 16' 52.5"

<u>Monday, October 5, 2020</u> 7:30 PM

Board Members:

Mark Gluesing, Chair (P)
Len Karan, Board Member (P)
Chad Reilly, Board Member (p)
Deborah Robinson, Board Member (P)
Steve Tanner, Board Member (P)
Rana Mana-Doerfer, DRB Recording Secretary (P)
Elisa Litchman, Administrative Assistant, Planning & Community Development (P)

Applicants & Attendees:

- 1. Daniel Sheehan, StretchMed Studios Inc. applying for signage for StretchMed Studios located at 1093 Great Plain Avenue.
 - Brian Cook President of StretchMed Studios.
- 2. Phill Naffah, Harvey Signs representing PetCo and VetCo Total Care and applying for signage at 163 Highland Avenue.
- 3. Tiffany Suddarth, One Stop Signs representing TD Bank and applying for signage at 95 Highland Avenue.
 - Bridgette Morris of One Stop Signs.

Mr. Chair called the meeting to order on October 5, 2020 at 7:30 PM EST.

Mr. Chair notified attendees of new public meeting orders issued by the governor of Massachusetts.

Agenda Item 1: (Signage)

<u>StretchMed Studios Inc. located at 1093 Great Plain Avenue applying for signage</u> - Daniel Sheehan and Brian Cook, StretchMed Studios

Mr. Sheehan presented a signage proposal to replace the existing sign which is covered with a temporary banner at StretchMed Studios. The sign is the same imagery of the banner that is

currently up on the building. The size of the proposed sign is the same as the current existing sign on the building 24"x168".

The sign is an aluminum pan panel with raised lettering and a raised circular logo 22" diameter. The applicant included images of a finished sign lying on a floor. Mr. Chair noted that the Board frowns upon applicants presenting finished signs before they have been reviewed because the Board may reject it or suggest alterations. Something possible in this case. The Chair stated the logo size was too large, and more negative space was needed to the edges of the sign panel.

Mr. Karan said the aluminum material does not seem to fit with the neighboring aesthetics. He also concurs with the Chair regarding the circular logo taking up a lot of space.

Mr. Tanner said he had a problem with the size of the logo. He would like to see it reduced. He said he does not have a problem with the material of the sign.

Ms. Robinson said she concurs with Mr. Karan & Mr. Tanner. She thought the logo is too big and does not 'love' the background color.

Mr. Reilly said he agrees with other Board members. If the logo is to be reduced, he would like to see more white space between the logo and the "S", and more white space between the "D" and the right edge of sign. Perhaps shrinking the whole thing and resizing the text. Mr. Reilly also suggested a dark background and having the word "stretch" in a lighter color if they are open to that. Mr. Cook, President of StretchMed indicated they are trying to maintain similarity with their franchises in Belmont and Wellesley.

Mr. Chair asked if the objections from the Board are strong enough to not approve this sign. Given the state of the business world the Board is trying to be user friendly.

Motion to approve the signage on the condition it is reduced by a third made by Mr. Tanner The motion was not seconded. The motion failed.

Motion to approve the signage as submitted by Mr. Reilly Motion was seconded by Mr. Karan

Name	Aye	Nay
Mark Gluesing	Aye	
Len Karan	Aye	
Chad Reilly	Aye	
Deborah Robinson	Aye	
Steve Tanner	Nay	

Agenda Item 2: (Signage)

<u>PetCo and VetCo Total Care located at 163 Highland Avenue applying for signage</u> - Phill Naffah, Harvey Signs.

Mr. Naffah came before the Board to present the signage his client wishes to install. PetCo is looking to install 3 signs and 1 banner as well as remove one sign.

PetCo is opening a veterinarian hospital at their Needham Location, and VetCo will become an important focus. They need a special permit from the Planning Board to operate the veterinarian service. They do not have approval at this time. The Chair noted that would be a condition noted on any sign approvals.

Sign A is a 31 sq. ft. internally illuminated LED sign with individual channel letters. The sign will read "VetCo Total Care". This sign is to be installed on the building and the sign will be installed above where the grooming sign is currently.

Sign B is an individual non-internally illuminated FCO letters that will read "Grooming, Dog Training & Vet Care" on the large pillar at the portico entrance area. They will be illuminated with gooseneck light fixtures.

Sign C is a replacement panel to the composite pylon sign. They propose to replace the vinyl on the existing Lexan panels with applied vinyl that reads "PetCo | VetCo Total Care"

PetCo is also looking to install a banner than reads "Vetco Total Care | Coming Soon" & "Vetco Total Care | Now Open!" before and after the opening.

Mr. Chair asked if the door under the grooming sign will be removed or filled in. Mr. Naffah said no, the door will still be used.

Mr. Reilly said that the Town has some concerns about temporary banners. He asked the Board that they double check what they can and cannot authorize. Mr. Reilly asked whether the name "VetCo Total Care" is a subsidiary of the business. Mr. Naffah said that is a play on the word "PetCo" but it is also a subdivision of the pet store itself.

In terms of the "Grooming, Dog Training & Vet Care" Mr. Reilly said that the Board generally likes to steer away from listing what the businesses do. And he would like more conversation on all the proposed signage before he would be agreeable to the additional lettering. For the wall and pylon sign if the "VetCo" was a little larger and the "Total Care" was smaller, it would look better. Everything in the current proposal looks a little crammed.

Ms. Robinson said she thinks the pylon sign is fine. But she does not like "VetCo Total Care" sign that is to be installed above the grooming door. It looks a little awkward regarding where it is to be installed.

Mr. Tanner said if the pylon sign is only to be re-lettered there will be ghosting of old lettering. He would prefer new lexan panels to be installed. He also asked for the banner to be resized to the allotted amount of 32 sq. ft.

Mr. Chair said he echoes Mr. Reilly's comments. He said the VetCo Total Care sign is not well designed. He believes it would look better if the word "VetCo" is a little larger.

Mr. Tanner said he would prefer if the gooseneck lighting is eliminated for Sign B. Mr. Reilly agreed. He suggested something smaller right next to the door that says "Grooming", and to also examine the overall square footage for the 3 words together.

Mr. Chair said the store has other options for them to advertise their new services, on the glass doors for example.

Mr. Chair informed Mr. Naffah of what the Board would be comfortable voting on during this meeting. The Board would continue the hearing on the other signs. The applicant said he had time to revise the proposals since they still were in process with the Planning Board.

Mr. Naffah said he would not mind coming back during the next meeting for approval on all proposed signage once he incorporates the Board's recommendations.

Motion to continue the PetCo/VetCo application on October 19th by Mr. Reilly Motion was seconded by Ms. Robinson.

Name	Aye Nay
Mark Gluesing	Aye
Len Karan	Aye
Chad Reilly	Aye
Deborah Robinson	Aye
Steve Tanner	Aye

Agenda Item 3: (Signage & Awning)

TD Bank located at 95 Highland Avenue applying for signage and awning. - Tiffany Suddarth, and Bridgette Morris, One Stop Signs

Bridgette Morris presented the Board with a request for face changes to the 6 signs at the TD Bank Needham location. The changes consist of a color change from dark green to a lighter green. They will also be taking off the word "Bank" on their ATM sign and changing their awning from a dark green to a light green.

Mr. Chair asked the Board members if they had any feedback. The Board members said they had no objections to the changes being proposed.

Motion to approve the sign modifications as submitted by Ms. Robinson. Motion was seconded by Mr. Reilly.

Name	Aye	Nay
Mark Gluesing	Aye	
Len Karan	Aye	
Chad Reilly	Aye	
Deborah Robinson	Aye	
Steve Tanner	Aye	

Motion to approve the change in the awning fabric color as submitted by Mr. Karan Motion was seconded by Mr. Reilly

Name	Aye	Nay
Mark Gluesing	Aye	
Len Karan	Aye	
Chad Reilly	Aye	
Deborah Robinson	Aye	
Steve Tanner	Aye	

Approval of Minutes:

Motion to approve the minutes of September 14th made by Ms. Robinson. Motion was seconded by Mr. Reilly.

Name	Aye Nay
Mark Gluesing	Aye
Len Karan	Abstained
Chad Reilly	Aye
Deborah Robinson	Aye
Steve Tanner	Abstained

Motion to Adjourn:

Motion to adjourn the Design Review Board meeting was made by Mr. Tanner. Motion was seconded by Mr. Reilly.

Meeting adjourned at 8:24 PM.

Name	Aye	Nay
Mark Gluesing	Aye	
Len Karan	Aye	
Chad Reilly	Aye	
Deborah Robinson	Aye	
Steve Tanner	Aye	

Future Meetings

October 19, 2020	Via Zoom	
November 2, 2020	Via Zoom	
November 16, 2020	Via Zoom	
December 7, 2020	Via Zoom	
December 21, 2020	Via Zoom	