RECEIVED TOWN CLERK MEEDHAM, MA 02492

TOWN OF NEEDHAM

MASSACHUSETTS

2024 FEB 27 AM 11: 17

500 Dedham Avenue Needham, MA 02492 781-455-7550

PLANNING BOARD

APPLICATION FOR SITE PLAN REVIEW

Project Determination: (circle one) Major Project Minor Project
This application must be completed, signed, and submitted with the filing fee by the applicant or his representative in accordance with the Planning Board's Rules as adopted under its jurisdiction as a Special Permit Granting Authority. Section 7.4 of the By-Laws.
Location of Property 609 Webster Street, Needham MA
Name of Applicant Townof Needham
Applicant's Address 1471 Highland Avenue, Needham MA Phone Number (781) 455-7500
Phone Number (781) 455-7500
Applicant is: Owner Tenant
Agent/Attorney X Purchaser
Property Owner's Name Town of Needham
Property Owner's Address 1471 Highland Avenue, Needham MA 02492
Telephone Number (781) 455-7500
Characteristics of Property: Lot Area 14.15 acres Present Use Educational
Map #226 Parcel #10 Zoning District Single Residence B
Description of Project for Site Plan Review under Section 7.4 of the Zoning By-Law: The Town of Needham seeks an amendment of the Major Project Site Plan Special Permit applicable to the Needham High School, 609 Webster Street, to allow for the renovation of four (4) existing tennis courts, the addition of four (4) new tennis courts, and installation of stormwater management improvements and ADA accessible walkways.
3
Signature of Applicant (or representative)
Address if not applicant Christopher Heep, 40 Grove Street-Suite 190, Wellesley MA 02482
Telephone # (617) 804-2422
Owner's permission if other than applicant
SUMMARY OF PLANNING BOARD ACTION
Received by Planning Board Date 27774
Hearing Date Parties of Interest Notified of Public Hearing
Decision Required by Decision/Notices of Decision sent
Granted
Denied Fee Paid Fee Waived
Denied Fee Paid Fee Waived Withdrawn
NOTE: Reports on Minor Projects must be issues within 35 days of filing date.

Christopher H. Heep

d: 617.804.2422 cheep@harringtonheep.com

February 26, 2024

BY EMAIL (lnewman@needhamma.gov)

Planning Board Town of Needham Public Services Administration Building 500 Dedham Avenue Needham, MA 02492

Re: Request to Amend Major Project Site Plan Special Permit No. 2004-01 High School Tennis Court Renovation

Dear Planning Board Members:

I am pleased to submit this application for an amendment of Major Project Site Plan Special Permit No. 2004-01 on behalf of the Town of Needham (the "Applicant") to authorize the comprehensive redesign and renovation of the Needham High School tennis courts. The new tennis courts and associated site improvements are shown on the plans submitted herewith, and includes a complete redesign, replacement, and expansion of the existing tennis courts.

The Major Project Site Plan Special Permit applicable to this property is dated April 6, 2004 (the "Decision") and has previously been amended multiple times. The Decision covers the High School property located at 609 Webster Street, which is located in the Single Residence B zoning district, is shown on Needham Town Assessors' Plan No. 226 as Parcel No. 10, and contains a total of 14.15 acres. The Decision and subsequent amendments allowed for renovations and improvements to the High School but did not authorize any particular work to expand the tennis courts (none was proposed at the time). Accordingly, this application now seeks an amendment of the Decision to authorize renovation of the four (4) existing on-site tennis courts and installation of four (4) additional tennis courts as shown on the site plans. This application does not propose any new buildings, does not involve any changes to the existing parking or vehicular circulation, and does not involve any structural changes to the High School building itself.

The Project

The proposed tennis courts redesign is shown on the plan set entitled "Town of Needham Needham High School Tennis Court Renovation Needham, Massachusetts 02492," dated February 6, 2024 and prepared by Activitas of 70 Milton Street, Dedham, MA, that is submitted along with this application. The key features of the new tennis courts include the following:

¹ The Planning Board has issued Amendments to the Decision dated January 5, 2010, December 6, 2011, October 27, 2015, July 19, 2016, August 9, 2016, November 28, 2017 and August 7, 2018.

- The High School will be adding four new tennis courts bringing the total number of courts from four (4) to eight (8). The existing four tennis courts will also be renovated and upgraded to match the newly installed courts.
- The site will feature new concrete sidewalks and a set of granite stairs leading to the new court area that will provide pedestrian access from the parking lot to all eight courts. A centrally located patio will be installed between the original and new courts that will be covered by a raised shade.
- The courts will be secured by typical 4-foot and 12-foot chain link fences that enclose four sets of courts (two courts in each fenced in set) that provide entry through gates accessible from the new walkways.

Compliance with MPSP Review Criteria

The proposed renovation of the High School is consistent with all the approval criteria for a Major Project Site Plan Special Permit under Section 7.4.6 of the Zoning Bylaw. Each criterion is discussed below.

(a) Protection of adjoining premises against seriously detrimental uses by provision for surface water drainage, sounds and sight buffers and preservation of views, light, and air.

The redesigned tennis courts will have no detrimental impacts on adjoining premises. The portion of the site is already in use as tennis courts, and the redesign of the site does not create any detrimental impacts on the surrounding area. The High School is not proposing any lighting associated with the tennis courts and the site will be improved with an underground drain line, area drains, and a new infiltration system within the parking lot area designed to keep water on the Property with no negative impact on neighboring lands. <u>See</u> Sheet L2.1 of the Plan Set and Stormwater Management and Erosion Control Report.

(b) Convenience and safety of vehicular and pedestrian movement within the site and on adjacent streets, the location of driveway openings in relation to traffic or to adjacent streets and, when necessary, compliance with other regulations for the handicapped, minors and the elderly.

Convenience and safety of vehicular and pedestrian movement within the site has been adequately provided for. The project does not alter the parking lot other than installing new granite curbing in the areas adjacent to where the walkways will be installed. The new sidewalks will improve pedestrian movement at the site and will provide safe and convenient access to all courts and court entrances.

(c) Adequacy of the arrangement of parking and loading spaces in relation to the proposed uses of the premises.

The plans do not propose adding to or altering the High School parking lot in any way other than providing access to the to the site by way of the new sidewalks, and the temporary disturbance for the installation of the subsurface infiltration system.

(d) Adequacy of the methods of disposal of refuse and other wastes resulting from the uses permitted on the site.

Disposal of refuse and other waste will be adequately provided for. The project is not a major generator of refuse and other wastes, and the volume of refuse generated is not anticipated to increase relative to the current use of the tennis courts. Disposal will be in accordance with applicable law and established practice for this site.

(e) Relationship of structures and open spaces to the natural landscape, existing buildings and other community assets in the area and compliance with other requirements of this By-Law.

The tennis courts are designed with careful consideration of existing structures and open space, and will fit within the general character of the High School property. In particular, the four (4) renovated courts will be in the same location on the High School property as the existing courts. The four (4) new courts will be located outside of the 25-foot side and rear setback required in the Single Residence B zoning district, thus there will be no encroachment or crowding of adjoining property owners' land. The land surrounding the tennis courts will be improved with new walkways, benches, and a patio to encourage use of the tennis courts and to provide convenient access and an enjoyable environment to the students and spectators.

(f) Mitigation of adverse impacts on the Town's resources including the effect on the Town's water supply and distribution system, sewer collection and treatment, fire protection, and streets; and may require when acting as the Special Permit Granting Authority or recommend in the case of minor projects, when the Board of Appeals is acting as the Special Permit Granting authority, such appropriate conditions, limitation, and safeguards necessary to assure the project meets the criteria of a through f.

The project will have no adverse impacts on the Town's resources. The site is already in use as the High School's tennis courts, and the redesign and renovation of the space will not create any new impacts on the Town's water supply and distribution system, sewer, fire protection or streets. The Stormwater Management and Erosion Controls Report submitted with this application details the mitigation provided to address the construction of the new tennis courts.

Planning Board February 26, 2024 Page 4 of 5

Based on the foregoing, the proposed development complies with all standards and criteria set forth in the provisions of the Zoning By-Law, and the requested amendment is in harmony with the purposes and intent of the By-Law and will have minimal adverse impacts on the surrounding area. The Applicant respectfully requests that the Decision be amended to incorporate the plan set submitted herewith showing the renovated tennis courts and associated site improvements.

Application Materials

This application includes the following materials:

a. Plans entitled "Town of Needham Needham High School Tennis Court Renovation Needham, Massachusetts 02492," dated February 6, 2024 and prepared by Activitas of 70 Milton Street, Dedham, MA.

Title Sheet & Index

Sheet EX1.1 – Existing Conditions Plan

Sheet SP1.1 – Site Preparation Plan

Sheet SP1.2 – Site Preparation Detail Sheet

Sheet L1.1 – Layout and Materials Plan

Sheet L2.1 – Grading and Utility Plan

Sheet L3.1 – Detail Sheet I

Sheet L3.2 – Detail Sheet II

Sheet L3.3 – Detail Sheet III

b. Stormwater Management and Erosion Control Report dated February 6, 2024 prepared by Activitas.

Pursuant to Section 7.4.4, the Applicant requests that the Planning Board waive the submission of any of the required information that is not submitted herewith. The Applicant also requests a waiver of the Planning Board's application fee on the ground that this is a Town project.

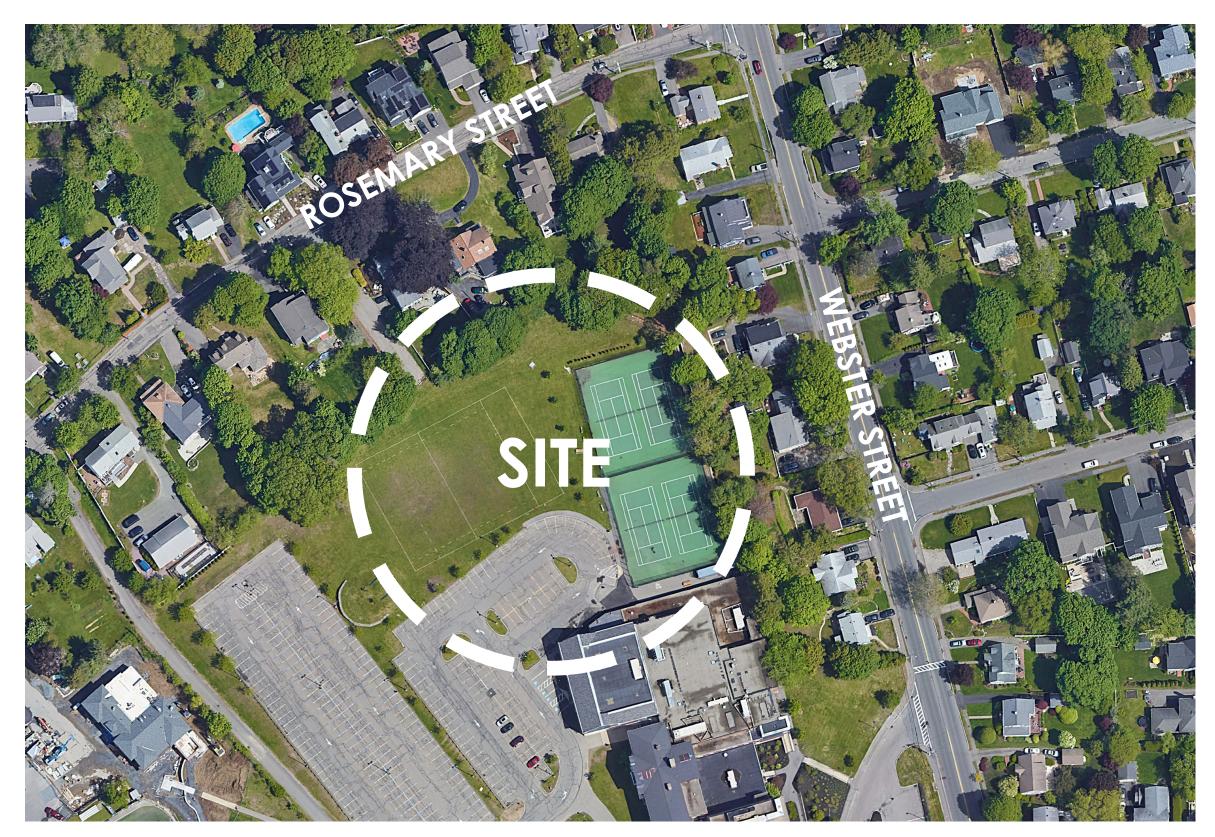
In addition, pursuant to Section 7.4.4 the Applicant hereby certifies that the project can be constructed, and the proposed use commenced without need for the issuance of any variance or other zoning relief from any provision of the By-Law by the Zoning Board of Appeals.

Planning Board February 26, 2024 Page 5 of 5

Thank you very much for your consideration of this application, and please let me know if I can provide any additional information prior to the Board's meeting on this request for an amendment of Major Project Site Plan Special Permit No. 2004-01.

Sincerely,

Christopher H. Heep


M.A.

cc: K. Fitzpatrick

D. Gutekanst

T. Ryder

A. Rrapi

LOCUS MAP

LIST OF DRAWINGS

EX1.1	EXISTING CONDITIONS PLAN	(BY TOWN OF NEEDHAM)

SP1.1 SITE PREPARATION PLAN

SP1.2 SITE PREPARATION DETAIL SHEET L1.1 LAYOUT AND MATERIALS PLAN

L2.1 GRADING AND UTILITY PLAN

L3.1 DETAIL SHEET I
L3.2 DETAIL SHEET II
L3.3 DETAIL SHEET III

MAJOR PROJECT SITE PLAN APPROVAL | FEBRUARY 6, 2024

TOWN OF NEEDHAM

NEEHDAM HIGH SCHOOL TENNIS COURT RENOVATION

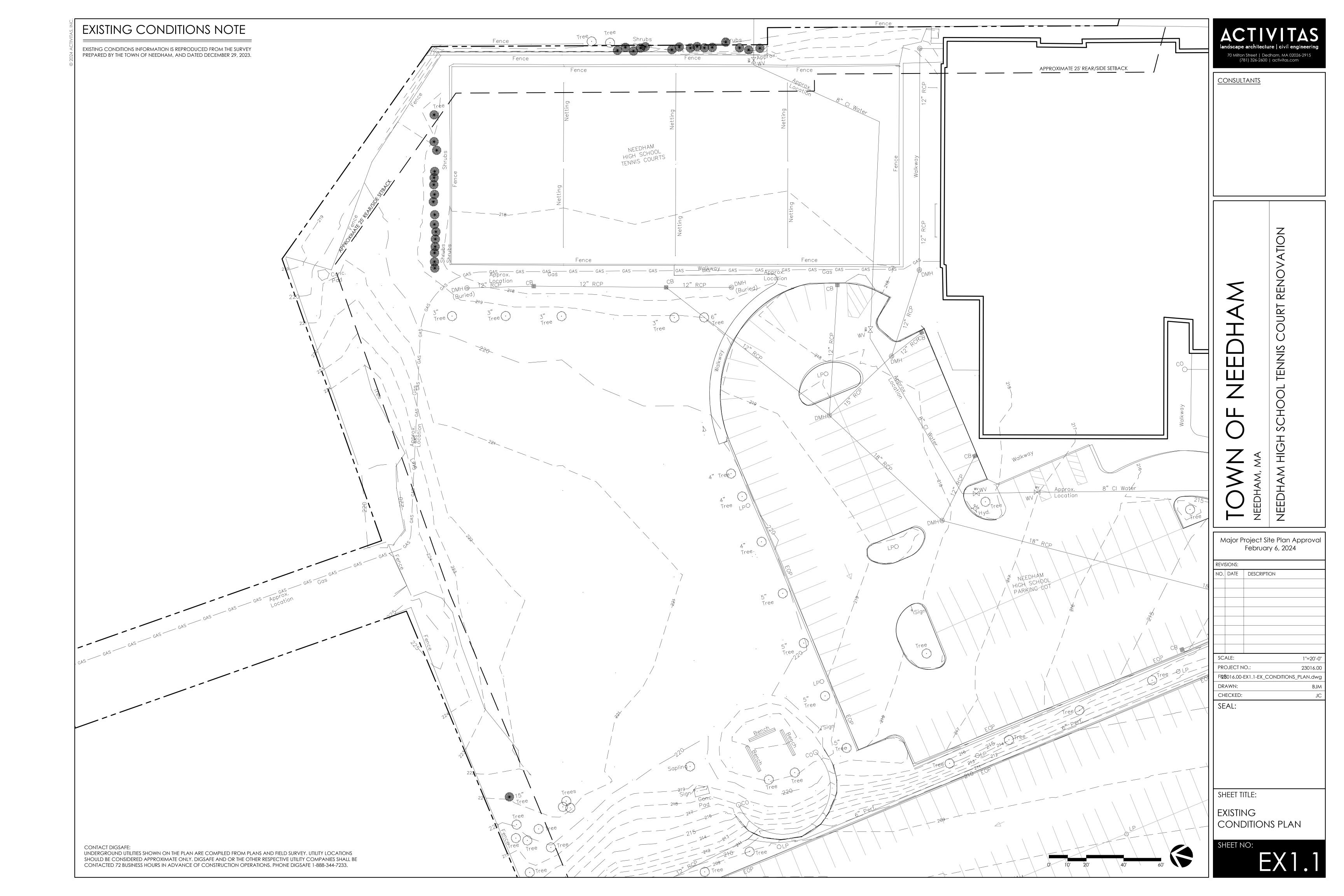
NEEDHAM, MASSACHUSETTS 02492

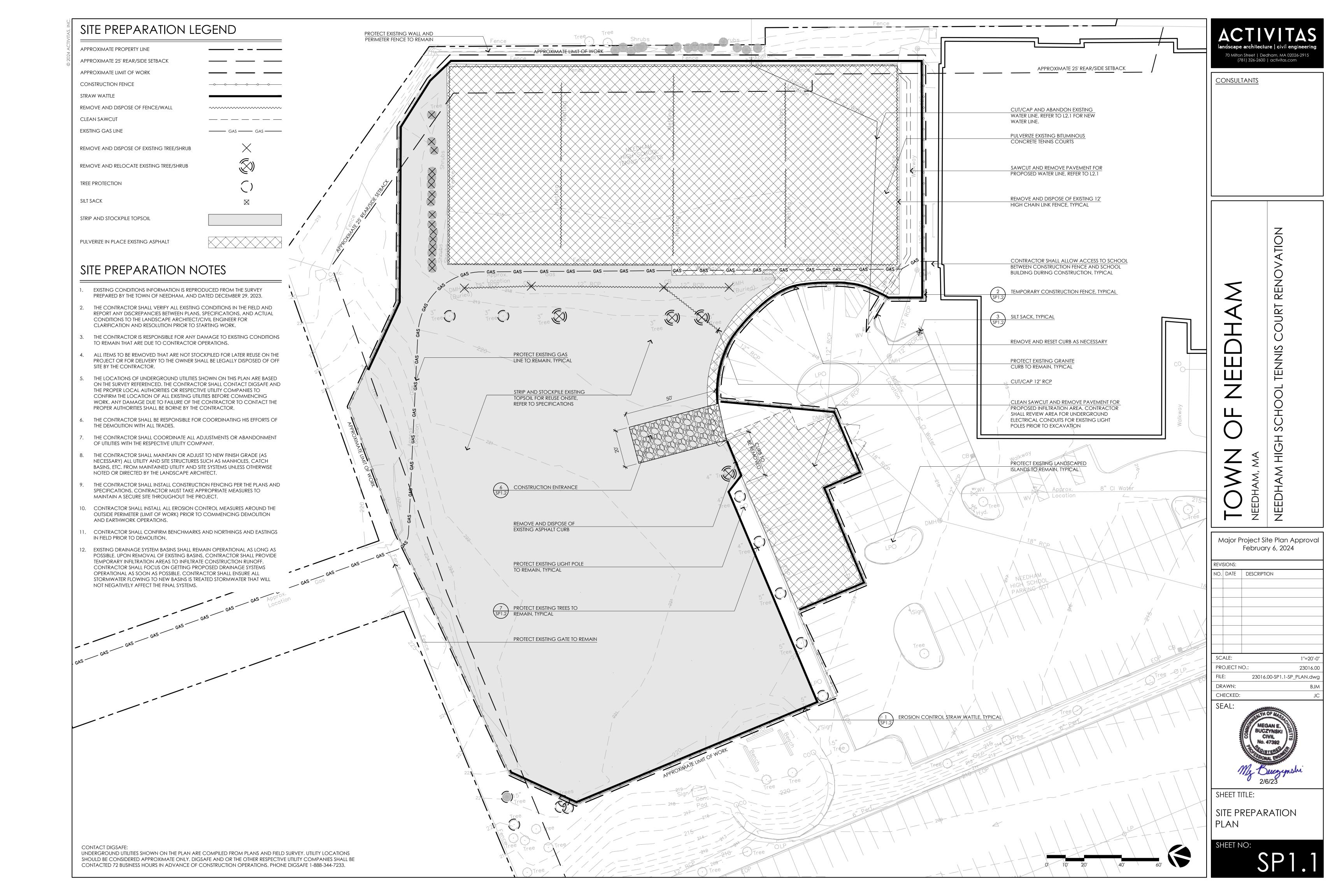
LOT AREA: 14.55 ACRES | MAP# 226 | PARCEL# 199 | ZONING DISTRICT: SINGLE RESIDENCE B

OWNER

Town of Needham 1471 Highland Avenue Needham, MA 02492 (781) 455-7940

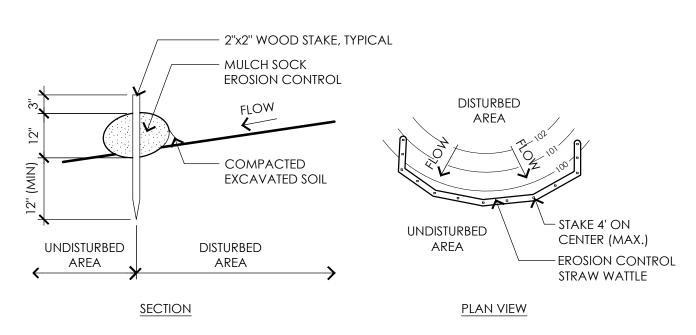
LANDSCAPE ARCHITECT/CIVIL ENGINEER


Activitas 70 Milton Street Dedham, MA 02026 (781) 326-2600

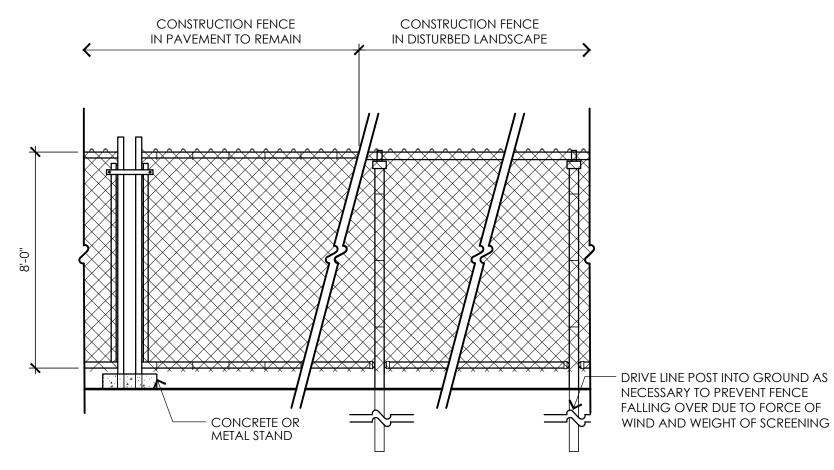

TOWN OF NEEDHAM NEEDHAM HIGH SCHOOL TENNIS COURT RENOVATION

MAJOR PROJECT SITE PLAN APPROVAL | FEBRUARY 6, 2024

REVI	SIONS:		PROJECT NO. 23016.00
NO.	DATE	SHEETS REVISED	NOTES

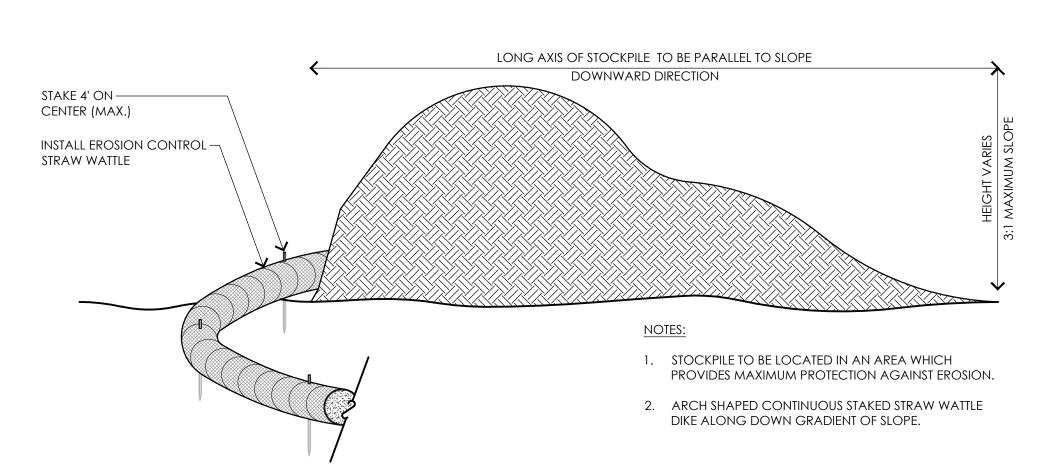


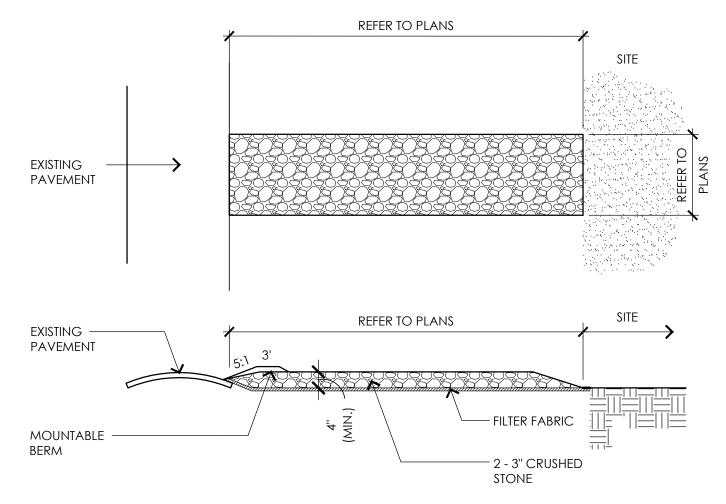
1. PLACE EROSION CONTROL MULCH SOCK ON LEVEL GRADE. EXTEND BOTH ENDS OF THE TUBE AT LEAST 8'-0" UPSLOPE AT 45 DEGREES TO THE MAIN ALIGNMENT.


2. REMOVE DEPOSITS WHEN SEDIMENT ACCUMULATION IS ONE THIRD THE HEIGHT OF THE

3. EROSION CONTROL STRAW WATTLE SHALL REMAIN IN WORKING ORDER UNTIL THE SITE IS STABILIZED. ADDITIONAL EROSION CONTROLS SHALL BE INSTALLED AS NEEDED TO PREVENT SILT FROM LEAVING THE SITE AT NO ADDITIONAL COST TO THE OWNER.

4. ALL CONTROLS SHALL BE SET 5' FROM BOTTOM TOE OF SLOPE

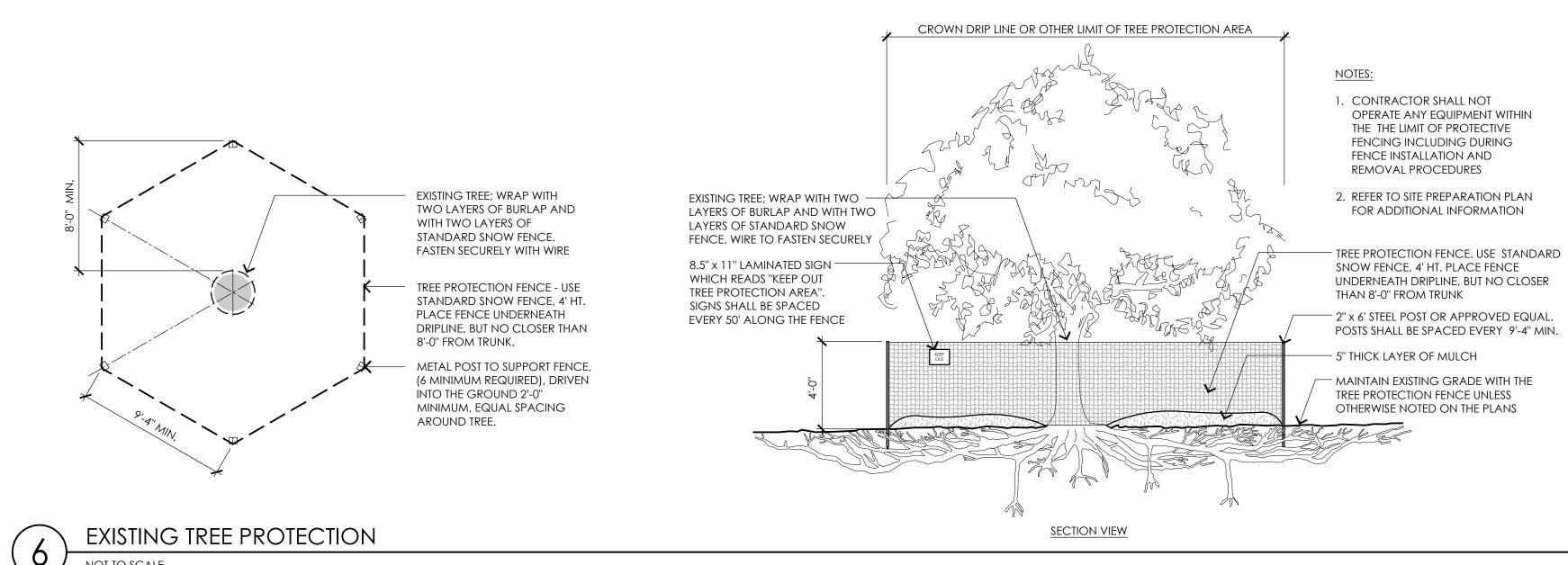

NOTES: 1. TEMPORARY CONSTRUCTION FENCE SHALL BE PROVIDED AT PROJECT LIMITS AS SHOWN AND SPECIFIED.



— INSTALL FILTER FABRIC SILT SACK, REFER TO SPECIFICATIONS BASIN

EROSION CONTROL STRAW WATTLE

TEMPORARY CONSTRUCTION FENCE



- 1. THE ENTRANCE SHALL BE MAINTAINED IN A CONDITION WHICH SHALL PREVENT TRACKING OR FLOWING OF SEDIMENT INTO THE STREET. THIS MAY REQUIRE PERIODIC TOP DRESSING WITH ADDITIONAL STONE AS CONDITIONS DEMAND AND REPAIR OR CLEANOUT OF ANY MEASURES USED TO TRAP SEDIMENT. ALL SEDIMENT SPILLED, DROPPED, WASHED AND/OR TRACKED ONTO PUBLIC RIGHTS-OF-WAYS MUST BE REMOVED IMMEDIATELY. MOUNTABLE BERM SHALL BE PERMITTED. PERIODIC INSPECTION AND MAINTENANCE SHALL BE PROVIDED.
- CONTRACTOR SHALL WASH WHEELS OF VEHICLES AT CONSTRUCTION ENTRANCE PRIOR TO VEHICLES EXITING SITE TO PREVENT SOIL MATERIAL FROM BEING TRACKED FROM THE SITE.
- 3. PERIODIC INSPECTION AND MAINTENANCE SHALL BE PROVIDED BY CONTRACTOR.

TEMPORARY MATERIAL STOCKPILE

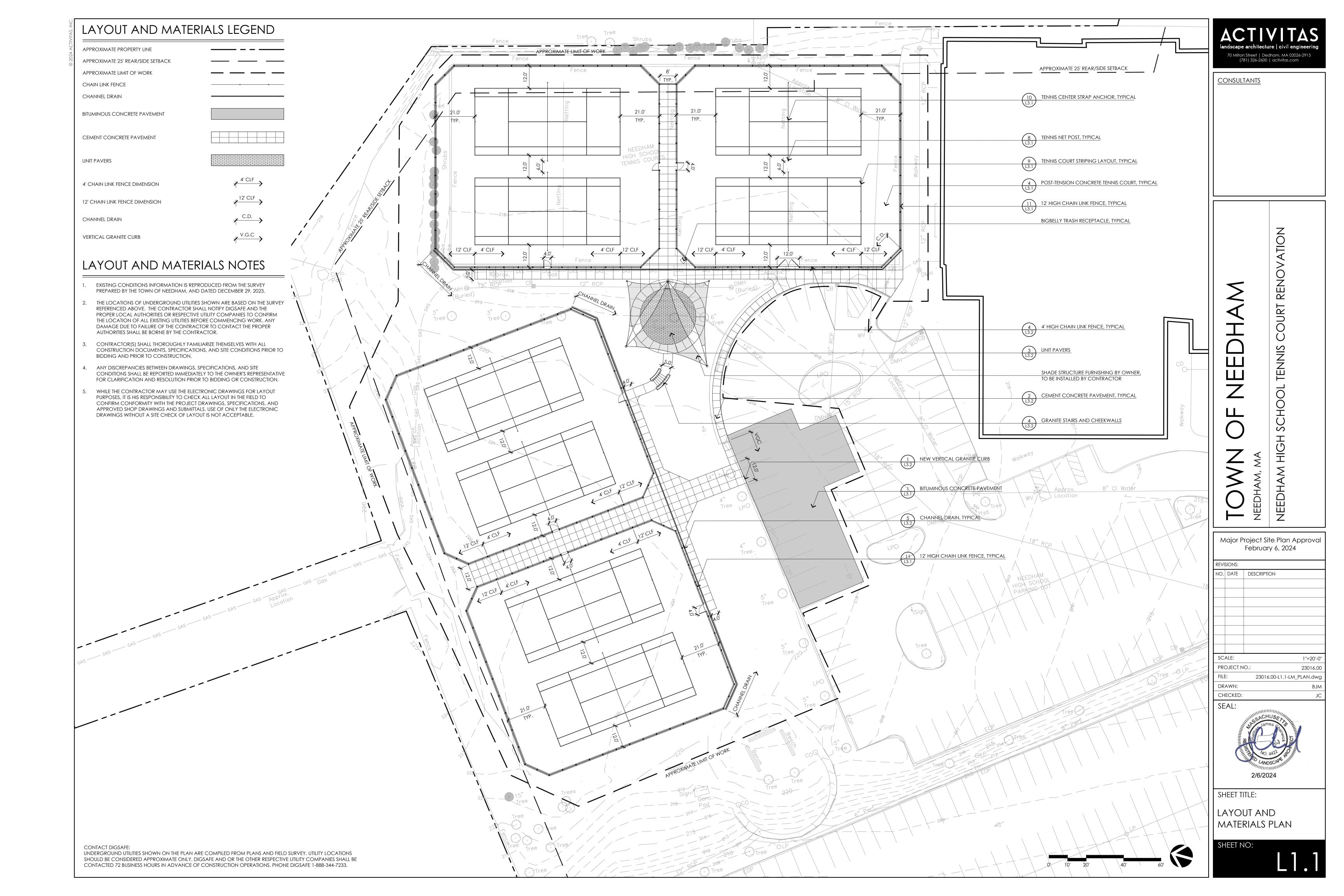
CONSTRUCTION ENTRANCE

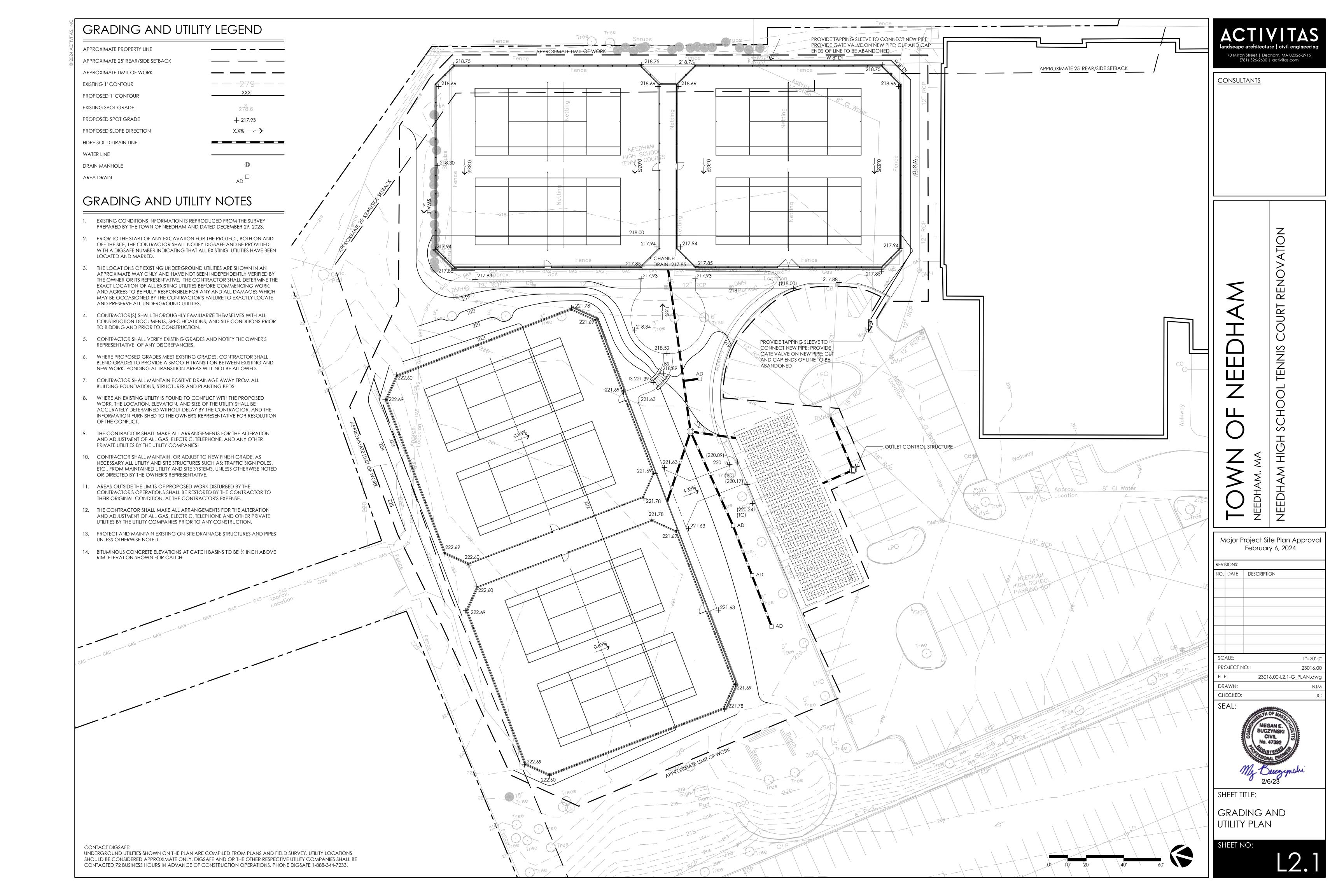
Major Project Site Plan Approval February 6, 2024

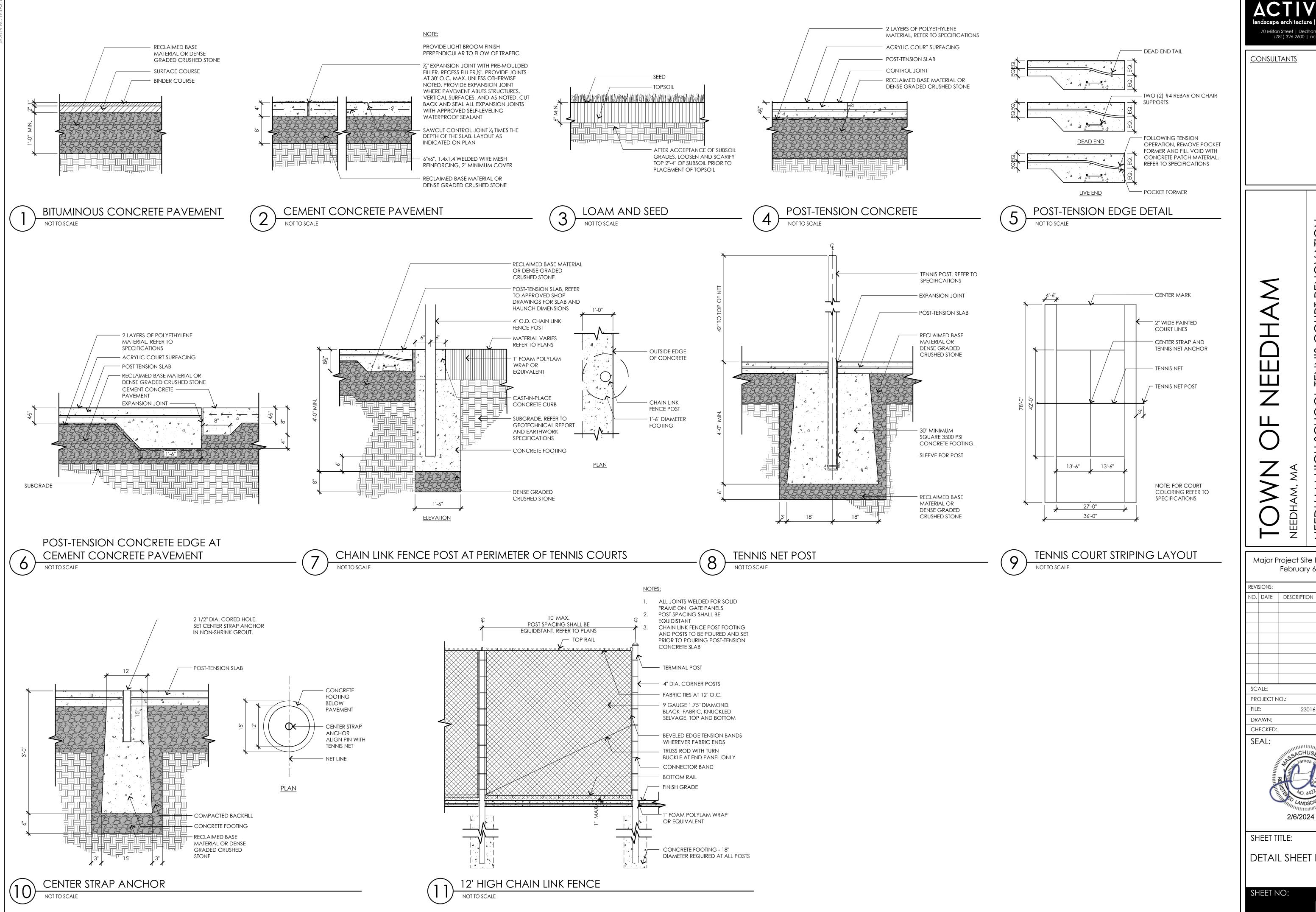
REVISIONS: NO. DATE DESCRIPTION

AS NOTED PROJECT NO.: 23016.00 23016.00-SP1.2-SP_DET_1.dwg DRAWN: CHECKED:

SEAL:




SHEET TITLE:


SITE PREPARATION DETAIL SHEET

CONSULTANTS

70 Milton Street | Dedham, MA 02026-2915 (781) 326-2600 | activitas.com

70 Milton Street | Dedham, MA 02026-2915 (781) 326-2600 | activitas.com

CONSULTANTS

REN OURT TENNIS S

Major Project Site Plan Approval February 6, 2024


> SCALE: AS NOTED PROJECT NO .: 23016.00 23016.00-L4.1-DET_1.dwg

DRAWN: CHECKED: SEAL:

SHEET TITLE:

DETAIL SHEET I

2/6/2024

CONSULTANTS

N OF NEEDHAM

TOP RAIL, TYPICAL

POST CAP, TYPICALTOP RAIL SLEEVE

TERMINAL POSTS (CORNER/GATE/END)

DIAMOND FABRIC,

KNUCKLED SELVAGE, TOP AND BOTTOM; SEE NOTE

CONNECTOR BAND, EQ.

SPACED. 18" O.C. MAX.
TENSION BARS, TYPICAL
HORIZONTAL BRACE AT

TERMINAL POST ONLY

TURNBUCKLE, TYPICAL

CEMENT CONCRETE

TRUSS ROD WITH

FINISH GRADE

TURF ANCHOR

BOTTOM RAIL,

TYPICAL

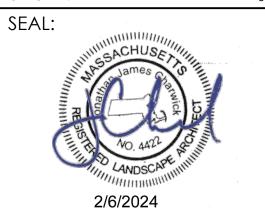
URT

ENNIS

S

Major Project Site Plan Approval February 6, 2024

REVI	sions:	
NO.	DATE	DESCRIPTION
00	A.I.C.	10110755


SCALE: AS NOTED

PROJECT NO.: 23016.00

FILE: 23016.00-L4.1-DET_1.dwg

DRAWN: BJM

CHECKED: JC

SHEET TITLE:

DETAIL SHEET II

I NO:

_3.2

FINISH GRADE

5. DRAIN MANHOLE FRAME SHALL BE SET IN FULL MORTAR BED. ADJUST TO GRADE WITH

—SEE NOTE #5

-SEE NOTE #3

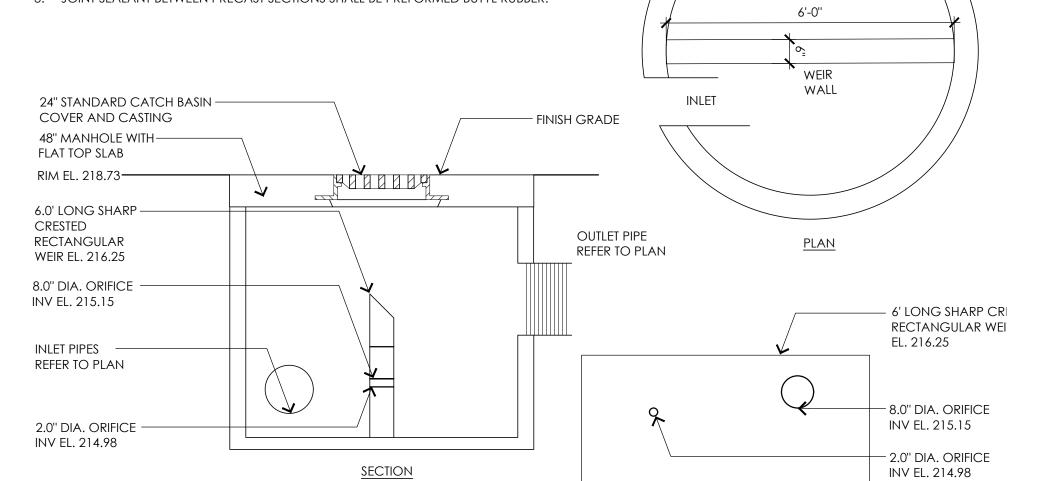
-SEE NOTE #4

-NON-SHRINK GROUT

DIAMETER VARIES

-12" COMPACTED GRAVEL

—SHELF TO BE FORMED AT 1" PER FOOT (FOR PIPE 18" AND LARGER)

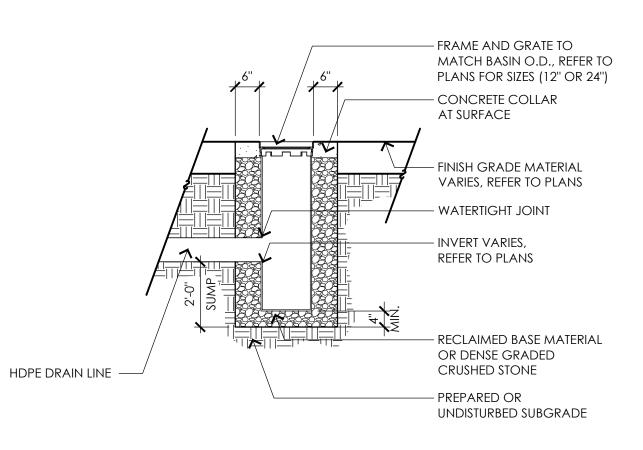

— PREPARED OR UNDISTURBED SUBGRADE

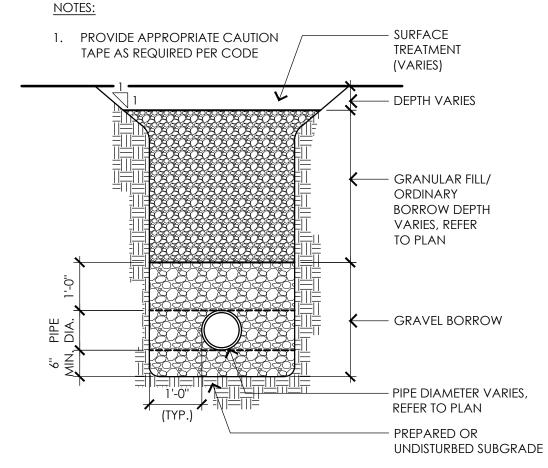
CLAY BRICK AND MORTAR (2 BRICK COURSES MINIMUM 5 BRICK COURSES MAXIMUM).

1. ALL SECTIONS SHALL BE DESIGNED FOR HS-20 LOADING.

2. PROVIDE "V" KNOCKOUTS FOR PIPES WITH 1" MAX. CLEARANCE TO OUTSIDE OF PIPE. MORTAR ALL PIPE CONNECTIONS.

3. JOINT SEALANT BETWEEN PRECAST SECTIONS SHALL BE PREFORMED BUTYL RUBBER.



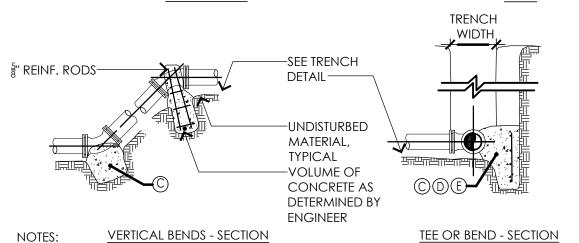

FACE OF WEIR WALL

1. GRATES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05.

2. FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05.

3. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR CORRUGATED HDPE.

UTILITY TRENCH


NOT TO SCALE

DRAIN MANHOLE

DIA. MANHOLE

OUTLET CONTROL STRUCTURE

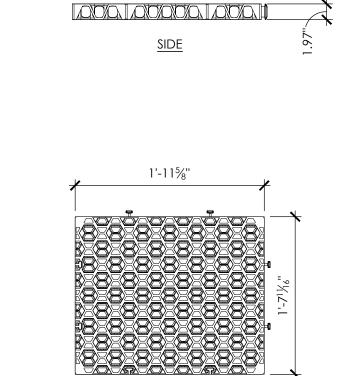
90° BEND 45°(C), 22 1/2°(D) OR 11 1/4°(E) BEND BENDS - PLAN TRENCH

VERTICAL BENDS - SECTION 1. POUR THRUST BLOCKS AGAINST UNDISTURBED MATERIAL. WHERE TRENCH WALL HAS BEEN DISTURBED, EXCAVATE LOOSE MATERIAL AND EXTEND THRUST BLOCK TO UNDISTURBED MATERIAL. NO JOINTS SHALL BE COVERED WITH CONCRETE.

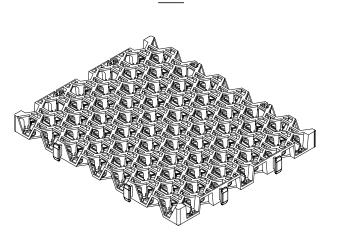
ON BENDS AND TEES, EXTEND THRUST BLOCKS FULL LENGTH OF FITTING. 3. PLACE SOLID CONCRETE BLOCKS IN FRONT OF ALL PLUGS BEFORE POURING THRUST BLOCK.

4. REQUIREMENTS OF THE ABOVE TABLE PRESUME MINIMUM SOIL BEARING OF 1 TON PER SQUARE FOOT, AND MAY BE VARIED BY THE ENGINEER TO MEET OTHER CONDITIONS ENCOUNTERED. 5. MEGA-LUG RETAINER GLANDS ARE REQUIRED FOR ALL MECHANICAL JOINTS. THESE GLANDS DO NOT REDUCE THE REQUIREMENTS FOR

THRUST RESTRAINT. 6. ALL FITTINGS SHALL BE WRAPPED IN POLYETHYLENE OR BUILDING PAPER PRIOR TO INSTALLATION OF CONCRETE RESTRAINT. 7. THREADED ROD SHALL BE ANSI A242 FY50 PIPE RESTRAINT NUTS TO MATCH AWWA C111. THREADED RODS AND NUTS TO BE FIELD


COATED WITH BITUMINOUS PAINT.

8. THRUST RESTRAINT IS REQUIRED FOR ALL TEES, BENDS, REDUCERS, CAPS, PLUGS, OR CROSSES. 9. INSTALL LIFT HOOKS INTO THRUST BLOCKS AT END CAPS AND PLUGS.


			BLC	OCKING BE	ARING OI	n undistu	RBED MAT	ERIAL				
REACTION		PIPE SIZE										
TYPE	4''	6"	8"	10"	12"	14"	16"	18"	20"	24"	30"	36"
A	1.78	4.38	7.84	11.14	16.52	21.82	30.82	36.04	48.12	69.28	107.66	154.78
B	1.30	3.10	5.52	8.38	12.18	16.74	21.78	27.74	34.02	48.98	76.12	109.44
©	0.96	2.38	4.24	6.02	9.32	11.82	16.68	19.42	26.04	37.50	58.26	83.76
0	0.50	1.2	2.16	3.08	4.74	6.02	8.50	9.94	13.28	19.12	29.70	42.70
E	0.26	0.60	1.08	1.54	2.38	3.04	4.24	5.02	6.66	9.58	14.90	21.42
	ABOVE D	IMENSION	IS ARE MIN	IIMUM THR	UST BLOC	K SIZES. TH	EY HAVE I	BEEN CALO	CULATED L	JSING A P	ressure o	F 200 PSI.
OTHER TEST PRESSURES	TEST PRES	TEST PRESSURE TO BE 150 PSI MIN, OR AS REQUIRED BY BWSC.										
FOR THE ABOVE REACTIONS											ON TO THE / (225 PSI / 2	

THRUST BLOCK SCHEDULE

SQUARE FEET OF CONCRETE THRUST

1'-11%"

R-TANK XD PANEL

<u>TOP</u>

THRUST BLOCKS

<u>ISOMETRIC</u>

70 Milton Street | Dedham, MA 02026-2915 (781) 326-2600 | activitas.com

CONSULTANTS

REN URT

TENNIS S NEEDHAM

N	Najor P	roject Site Plan Approva February 6, 2024
REVI	sions:	
NO.	DATE	DESCRIPTION
SC.	ALE:	AS NOTED
PR	OJECT N	O.: 23016.0
FILE	Ξ:	23016.00-L4.1-DET_1.dwg
DR	AWN:	BJA

SEAL:

SHEET TITLE:

CHECKED:

DETAIL SHEET II

STORMWATER MANAGEMENT AND EROSION CONTROL REPORT

Date: 6 February 2024

Applicant: Town of Needham Prepared By: Ben McDonough, EIT

1471 Highland Ave Civil Designer
Needham, MA 02494 Activitas Inc.
70 Milton Street

Dedham, MA 02026

Project Needham High School Reviewed By: Megan Buczynski, PE Address: Ang Webster Street Principal Civil Engineer

609 Webster Street Principal Civil Engineer Needham, MA 02494 Activitas Inc.

70 Milton Street
Dedham, MA 02026

Project: Needham High School Tennis Court Renovation

PROJECT OVERVIEW

The Town of Needham would like to renovate the tennis facility at Needham High School located at 609 Webster Street in Needham. The proposed work will include:

- Renovation of four (4) existing tennis courts
- Construction of four (4) new tennis courts
- Renovation / improvements to team and spectator areas
- Construction of handicap accessible walkways to all courts

COMPLIANCE WITH STORMWATER STANDARDS

The Town of Needham utilizes the policy, criteria and information including specifications and standards of the latest edition of the Massachusetts Department of Environmental Protection Stormwater Handbook (MA Stormwater Handbook) and the Town of Needham Stormwater Bylaw (Article 7). The report below outlines how each of the MA Stormwater Standards and requirements set forth in the Needham Stormwater Bylaw are met, satisfying regulatory requirements.

Standard 1: No New Untreated Discharges

The MA Stormwater Handbook requires that projects demonstrate that there are no new untreated discharges and that new discharges will not cause erosion or scour to downstream wetlands or water of the Commonwealth.

Page 2 of 15

Computations and strategies shown for Standards 4 through 6 in this report demonstrate that there will be no new untreated discharges from the site.

Standard 2: Peak Rate Attenuation

Standard 2 was defined with the understanding that development typically includes an increase in impervious surface and that with that increase in impervious surface a greater volume of runoff will be generated. To mitigate this increase in volume to avoid downstream flooding, Standard 2 requires that stormwater management systems be designed so that postdevelopment peak discharge rates don't exceed pre-development peak discharge rates for the 2-yr, 10-yr, and 100-yr storm events.

The Town of Needham has implemented a recharge requirement in the Stormwater Bylaw to further reduce the volume of flow from a project in comparison to the existing condition (refer to Standard 3 for these calculations). The Town has noted that the existing downstream stormwater system is often overtaxed in storm events and the recharge requirement was implemented to help mitigate this issue. On this project site, by implementing the additional recharge requirement, the volume of stormwater to leave the site is below the existing condition volumes. It should be noted that while the rate of runoff is slightly greater than existing, in this case because we are reducing the actual volume, we are meeting the intent of this Standard which is to reduce off-site flooding due to the project. Additionally, in reviewing the watershed which flows to Rosemary Lake, this project site is located on the lower portion of the watershed and the small increase in rate may be beneficial to move water through the stormwater system earlier in a storm event. The calculations in this section will show how the recharge requirement decreases the runoff volume entering the municipal system.

2.1 Site Description

The Needham High School Tennis project site is a 2.09-acre area containing four tennis courts, grassed areas, and walkways. The area is bordered by houses to the north, east, and west, and the Needham High School building and parking areas to the south. The tennis courts are situated on the highest terrace of the high school site around elevation 225.00 and the adjacent parking lot area is down gradient near El. 219.00. The surrounding area to the south continues to slope down gradient.

2.1.1 Soil Conditions

The Natural Resources Conservation Service (NRCS) maps soils in the vicinity of the project site as Woodbridge-Urban land complex, 3-15 percent slopes (623C), refer to the attached NRCS Soil

Page 3 of 15

Report. This soil has a hydrologic rating of C/D. For the purposes of this analysis, a hydrologic rating of C has been used in the analysis.

2.1.2 Rainfall

In accordance with the MA Stormwater Standards, rainfall data is from the TP-40 Rainfall Frequency Atlas of the United States. The following depths were used in the HydroCAD model for the 2-yr, 10-yr, and 100-yr storm events:

Table 2.1: Rainfall Data

Storm Event	Rainfall Depth
2-yr	3.2"
10-yr	4.7"
100-yr	6.7"

^{*}See Rainfall Data attachment for rainfall data

2.2 Hydrologic Model Description

The drainage analysis was performed using the Soil Conservation Service (SCS) TR-55 and TR-20 methodologies and the computer program HydroCAD 10.20-3c by HydroCAD software Solutions, LLC.

2.2.1 Existing Conditions

The existing site is divided in two drainage areas, EX-1, and EX-2, which flow to two different sections of the municipal system, EPLE and WPLE, respectively. See the Pre-Development Plan Attachment (Fig. 1) for a breakdown of the existing area. These two sections of the system eventually combine and flow to Rosemary Lake which is considered Discharge Point 1 modeled DP-1E in HydroCAD.

Drainage Area EX-1 is a 79,516-sf area consisting of the existing four (4) tennis courts, the adjacent grassed areas, and bituminous concrete walkways. Runoff from EX-1 sheet flows to the south and is collected by the existing drainage system west of the existing tennis courts which ties into the eastern system in the parking lot (EPLE).

Drainage Area EX-2 is a 11,584-sf area consisting of a portion of a grassed area to the west of the tennis courts. Runoff from EX-2 sheet flows southwest off site down a slope to a drainage system in the parking lot that flows to the west (WPLE).

As noted above, these two drainage systems flow to DP-1E Rosemary Lake.

Page 4 of 15

2.2.2 Proposed Conditions

In the proposed conditions the two drainage areas (PR-1 and PR-2) are maintained, but runoff from a larger portion of the overall area will now flow towards EPLP. See the Post-Development Plan Attachment (Fig. 2) for a breakdown of the proposed area.

Drainage Area PR-1 is an 88,675-sf area that consists of the existing four (4) tennis courts, the four (4) new tennis courts, spectator areas, handicap accessible walkways, and grassed areas. Runoff from this area flows from the east edge of the existing tennis courts to the west edge of the existing tennis courts where it is collected by a channel drain and connects to the proposed detention basin. Runoff from the new tennis courts flows from north to south and is collected by a channel drain and connects to the proposed detention basin. Runoff from adjacent landscape areas is collected in area drains and sent to the proposed detention basin. The detention basin, modeled as Pond 1P in HydroCAD, outlets to an outlet control structure and flows to the east parking lot system (EPLP) which eventually flows to Rosemary Lake, modeled DP-1P in HydroCAD. See HydroCAD report for details.

Pond 1P was designed to provide adequate storage to meet the Town of Needham 1" recharge requirement. The proposed system uses the R-Tank System as provided by Ferguson and crushed stone with a 35% void ratio. To meet the recharge requirements over C-soils, a large footprint, but low-profile system was designed. Refer to HydroCAD for the layout of the system. Runoff from PR-1 flows into this system and then is released through an outlet control structure that ties into the existing parking lot drainage system (EPLP).

Drainage Area PR-2 is a 2,245-sf area consisting of a small grass area to the south of the new tennis courts that flows downhill and is not collected in the new drainage infrastructure. This runoff continues to flow to the parking area to the south which flows into the drainage system to the west (WPLP) which eventually flows to Rosemary Lake, modeled as DP-1P in HydroCAD. See HydroCAD report for details.

Table 2.2: Existing & Proposed Conditions Takeoff Areas (sf)

	Impervious CN=98	Grass CN=79	Total Area	Average CN
EX-1	36,378	43,138	79,516	88
EX-2	0	11,584	11,584	79
PR-1	66,254	22,421	88,675	92
PR-2	0	2,425	2,425	79

Page 5 of 15

2.2.3 Drainage Analysis Results

Table 2.3 documents the results of the hydrologic analysis. As noted previously, the total volume in all the storms decreases meeting the intent of Standard 2. While the rates are slightly above existing conditions, the volumes are less and therefore the intent of the standard is met.

Table 2.3: Summary of Runoff Rates (cfs) & Volumes (cf)

		2	? Year	10 Year		100 Year	
		Rate (cfs)	Volume (cf)	Rate (cfs)	Volume (cf)	Rate (cfs)	Volume (cf)
ARGE VTS	DP-1E	4.57	14,523	7.72	24,885	11.95	39,296
DISCHARG	DP-1P	5.99	13,577	8.92	24,430	12.77	39,224

Standard 3: Stormwater Recharge

3.1 Stormwater Recharge Calculation

The Stormwater Standards indicate that at a minimum, the annual recharge from the post development site shall approximate the annual recharge from pre-development conditions based on soil type. Since Group C soils have a high runoff potential and lownfiltration rates, the Stormwater Standards give us a Volume to Recharge coefficient, F, of 0.25" for C-soils. The required recharge volume, the stormwater volume that must be infiltrated, equals the recharge volume multiplied by the total area within the NRCS Hydrologic Group that is impervious. The Town of Needham requires post construction measures to provide a minimum combined volumetric capacity to recharge one (1) inch of rainfall depth over the total increase in impervious area of the property.

$$R_v = F~x~Impervious~Area$$
*F for Town Regulations is 1-inch $R_v = (1.0in)~x~\left(\frac{1~ft}{12~in}\right)x~(~29,672~sf)$
 $R_v = 2,472~cf$

Pond-1P has a detention volume of 3,200 cf. Therefore, the required recharge volume will be fully infiltrated.

3.2 Drawdown Time

The MA Stormwater Handbook requires that recharge volume have a drawdown time of 72 hours or less. The time required to dewater a recharge system may be estimated by the following equation:

$$Time_{drawdown} = \frac{V_{RS}}{(K) x \left(\frac{1ft}{12in}\right) x (A_R)}$$

 $V_{RS} = Volume \ of \ recharge \ storage \ system \ (cf)$

$$K = Rawls \ Rate \ \left(\frac{in}{hr}\right)$$

$$A_R = Surface \ area \ of \ recharge \ system \ (sf)$$

The drawdown time for the detention system associated with the infiltration basin (Pond-1P):

$$Time_{drawdown} = \frac{3,200 cf}{\left(\frac{0.17 in}{hr}\right) x \left(\frac{1 ft}{12 in}\right) x (3,434 sf)}$$
$$Time_{drawdown} = 65.76 hours$$

The drawdown time of 65.76 hours for Pond-1P is below the 72-hour maximum as set by the MA Stormwater Handbook and therefore the standard has been met.

Standard 4: Required Water Quality Volumes

Stormwater management standards will be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). The MA Stormwater Handbook states that this standard is met when:

- 1. Suitable practices for source control and pollution prevention are identified in a longterm pollution prevention plan, and thereafter are implemented and maintained.
- Structural stormwater best management practices are sized to capture the required water quality volume as determined in accordance with the Massachusetts Stormwater Handbook; and
- 3. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook

The MA Stormwater Handbook requires a water quality volume equal to 0.5-inch of runoff times the total impervious area of the post development site.

$$V_{WQ} = 0.5 in x \frac{1 ft}{12 in} x Total Impervious$$
$$V_{WQ} = 0.5 in x \frac{1 ft}{12 in} x 66,254 sf$$

Page 7 of 15

 $V_{WQ} = 2,760.58 cf$

Pond-1P has a cumulative storage volume of 3,200 cf which meets the required Water Quality Volume calculated above.

Standard 5: Land Uses with Higher Potential Pollutant Loads

This project is not considered a land use with Higher Potential Pollutant loads therefore Standard 5 is not applicable to this project.

Standard 6: Critical Areas

Runoff from this project does not discharge to any critical areas and therefore is not subject to additional treatment required by Standard 6.

Standard 7: Redevelopment

For the purposes of the Stormwater Management Standards, redevelopment projects are defined to include development, rehabilitation, and expansion on previously developed sites provided the redevelopment results in no net increase in impervious area. Since this project increases the total net impervious area on the site, this project does not meet the definition of a redevelopment as defined in the MA Stormwater Standards. Due to this, all the stormwater standards must be met and have been met as demonstrated in this report.

Standard 8: Construction Period Pollution Prevention and Erosion & Sedimentation Control

Construction period pollution prevention and erosion and sedimentation control will be implemented at the project site to control construction related impacts during construction and land disturbance activities. Refer to the Site Preparation Plan for location of erosion and sediment controls. In addition as the project will disturb over 1-acre of land the General Contractor will be required to submit for an obtain an EPA NPDES Construction General Permit for the proposed construction. As part of this submission the General Contractor will be required to develop a Stormwater Pollution Prevention Plan (SWPPP) for the project and submit to the project engineer for review and approval.

Standard 9: Operation and Maintenance Plan

The proposed project is owned by the Town of Needham. Stormwater structures and other stormwater best management practices should be maintained as directed in the Operations

Page 8 of 15

and Maintenance Plan. An Operation and Maintenance Plan has been included as an attachment.

Standard 10: Prohibition of Illicit Discharges

Illicit Discharge Compliance Statement

"Per the requirements of Standard 10 of the Massachusetts Stormwater Management Standards it shall be stated that No Illicit Discharges exist at Needham High School located at 609 Webster Street, Needham, Massachusetts."

If you have any questions or comments on the enclosed information, please do not hesitate to contact me directly at (617) 981-9845 or by email at bim@activitas.com.

Respectfully,

ACTIVITAS

Ben McDonough, EIT

Buyer of M. Dargh

Civil Designer bim@activitas.com

cc: Jon Charwick, Activitas, Inc.

Meg Buczynski, Activitas, Inc.

Attachments: MA Stormwater Checklist

NRCS Soil Report Rainfall Data

Pre-Development Plan Post-Development Plan

HydroCAD Report

Operation & Maintenance Plan

Stormwater Management and Erosion Control Report 6 February 2024 Needham High School Tennis

Page 9 of 15

MA Stormwater Checklist

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

000 D 1:	
11/2- Ducounstr	2/5/2024
Signature and Date	

C	h	Δ	^	L	li	cf

	ject Type: Is the application for new development, redevelopment, or a mix of new and evelopment?
	New development
	Redevelopment
\boxtimes	Mix of New Development and Redevelopment

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	☐ Credit 1
	Credit 2
	☐ Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges
\boxtimes	No new untreated discharges
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 2: Peak Rate Attenuation

Standard 2 waiver requested because the project is located in land subject to coastal and stormwater discharge is to a wetland subject to coastal flooding

	Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.		
\boxtimes	Calculations provided to show that post-development peak discharge rates do not exceed pre- development rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24- hour storm.		
Standard 3: Recharge			
	Soil Analysis provided.		
\leq	Required Recharge Volume calculation provided.		

\boxtimes	Runoff from all impervious areas at the site discharging to the infiltration BMP.
	Runoff from all impervious areas at the site is <i>not</i> discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Dynamic Field¹

Required Recharge volume reduced through use of the LID site Design Credits.

☐ Simple Dynamic

Sizing the infiltration, BMPs is based on the following method: Check the method used.

Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:

☐ Site is comprised solely of C and D soils and/or bedrock at the land surface

M.G.L. c. 21E sites pursuant to 310 CMR 40.0000

☐ Solid Waste Landfill pursuant to 310 CMR 19.000

Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.

☐ Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

Static
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)		
Sta	andard 3: Recharge (continued)	
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.	
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.	
Sta	ndard 4: Water Quality	
The	ELOng-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan. A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge: is within the Zone II or Interim Wellhead Protection Area	
	is near or to other critical areas	
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)	
	involves runoff from land uses with higher potential pollutant loads.	
	The Required Water Quality Volume is reduced through use of the LID site Design Credits.	

Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

applicable, the 44% TSS removal pretreatment requirement, are provided.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 4: Water Quality (continued) The BMP is sized (and calculations provided) based on: ∑ The ½" or 1" Water Quality Volume or The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume. The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs. A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided. Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs) ☐ The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted *prior* to the discharge of stormwater to the post-construction stormwater BMPs. The NPDES Multi-Sector General Permit does *not* cover the land use. LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan. All exposure has been eliminated. All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list. The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent. Standard 6: Critical Areas ☐ The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area. Critical areas and BMPs are identified in the Stormwater Report.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

andard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum tent practicable The project is subject to the Stormwater Management Standards only to the maximum Extent
Practicable as a:
☐ Limited Project
 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
☐ Bike Path and/or Foot Path
Redevelopment Project
Redevelopment portion of mix of new and redevelopment.
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

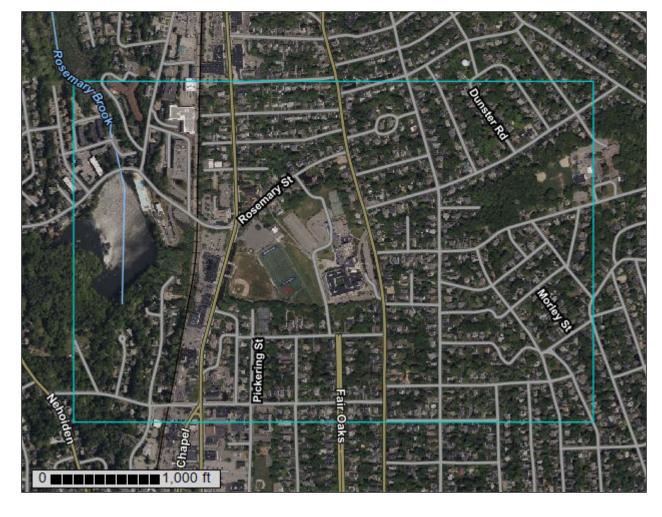
Checklist for Stormwater Report

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)		
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.	
	The project is <i>not</i> covered by a NPDES Construction General Permit.	
	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.	
	The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.	
Sta	ndard 9: Operation and Maintenance Plan	
	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:	
	Name of the stormwater management system owners;	
	☑ Party responsible for operation and maintenance;	
	Schedule for implementation of routine and non-routine maintenance tasks;	
	☑ Plan showing the location of all stormwater BMPs maintenance access areas;	
	☐ Description and delineation of public safety features;	
	☐ Estimated operation and maintenance budget; and	
	○ Operation and Maintenance Log Form.	
	The responsible party is <i>not</i> the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:	
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;	
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.	
Sta	ndard 10: Prohibition of Illicit Discharges	
	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;	
\boxtimes	An Illicit Discharge Compliance Statement is attached;	
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of any stormwater to post-construction BMPs.	

Stormwater Management and Erosion Control Report 6 February 2024 Needham High School Tennis

Page 10 of 15


NRCS Soil Report

Natural Resources

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Norfolk and Suffolk Counties, Massachusetts

Table—Hydrologic Soil Group

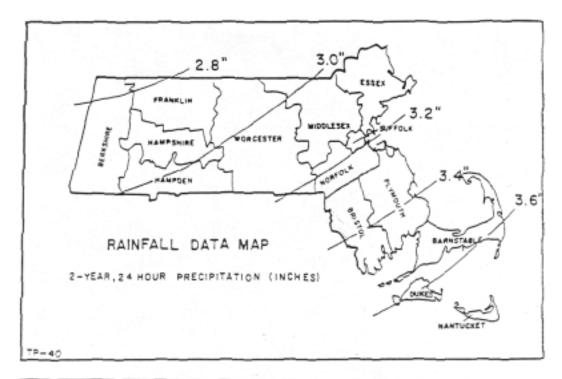
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		13.4	3.9%
31A	Walpole sandy loam, 0 to 3 percent slopes	B/D	2.1	0.6%
51	Swansea muck, 0 to 1 percent slopes	B/D	2.8	0.8%
52	Freetown muck, 0 to 1 percent slopes	B/D	5.7	1.7%
103B	O3B Charlton-Hollis-Rock outcrop complex, 3 to 8 percent slopes		36.0	10.5%
253D	Hinckley loamy sand, 15 to 35 percent slopes	А	15.2	4.5%
255C	Windsor loamy sand, 8 to 15 percent slopes	А	1.2	0.3%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	С	13.3	3.9%
305D	Paxton fine sandy loam, 15 to 25 percent slopes	С	13.5	3.9%
602	Urban land, 0 to 15 percent slopes		47.5	13.9%
623C	Woodbridge-Urban land complex, 3 to 15 percent slopes	C/D	58.0	16.9%
626B Merrimac-Urban land complex, 0 to 8 percent slopes		A	115.6	33.8%
654	Udorthents, loamy	Α	5.8	1.7%
655	Udorthents, wet substratum		12.2	3.6%
Totals for Area of Inter	est		342.3	100.0%

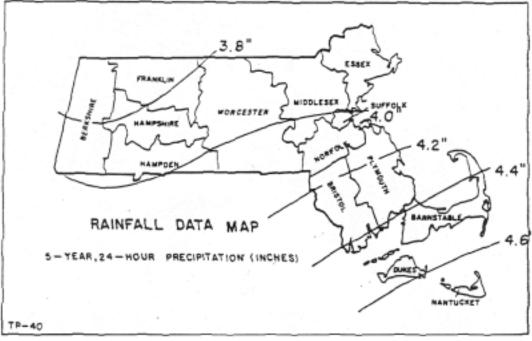
Rating Options—Hydrologic Soil Group

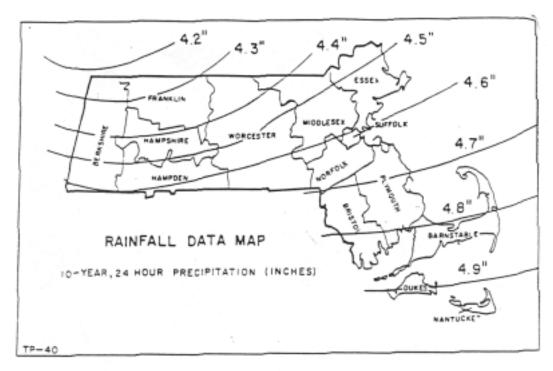
Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

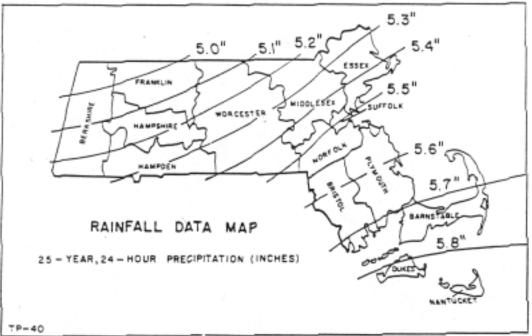
Tie-break Rule: Higher

Page 11 of 15

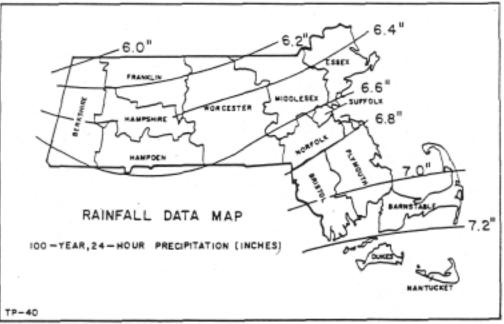

Rainfall Data

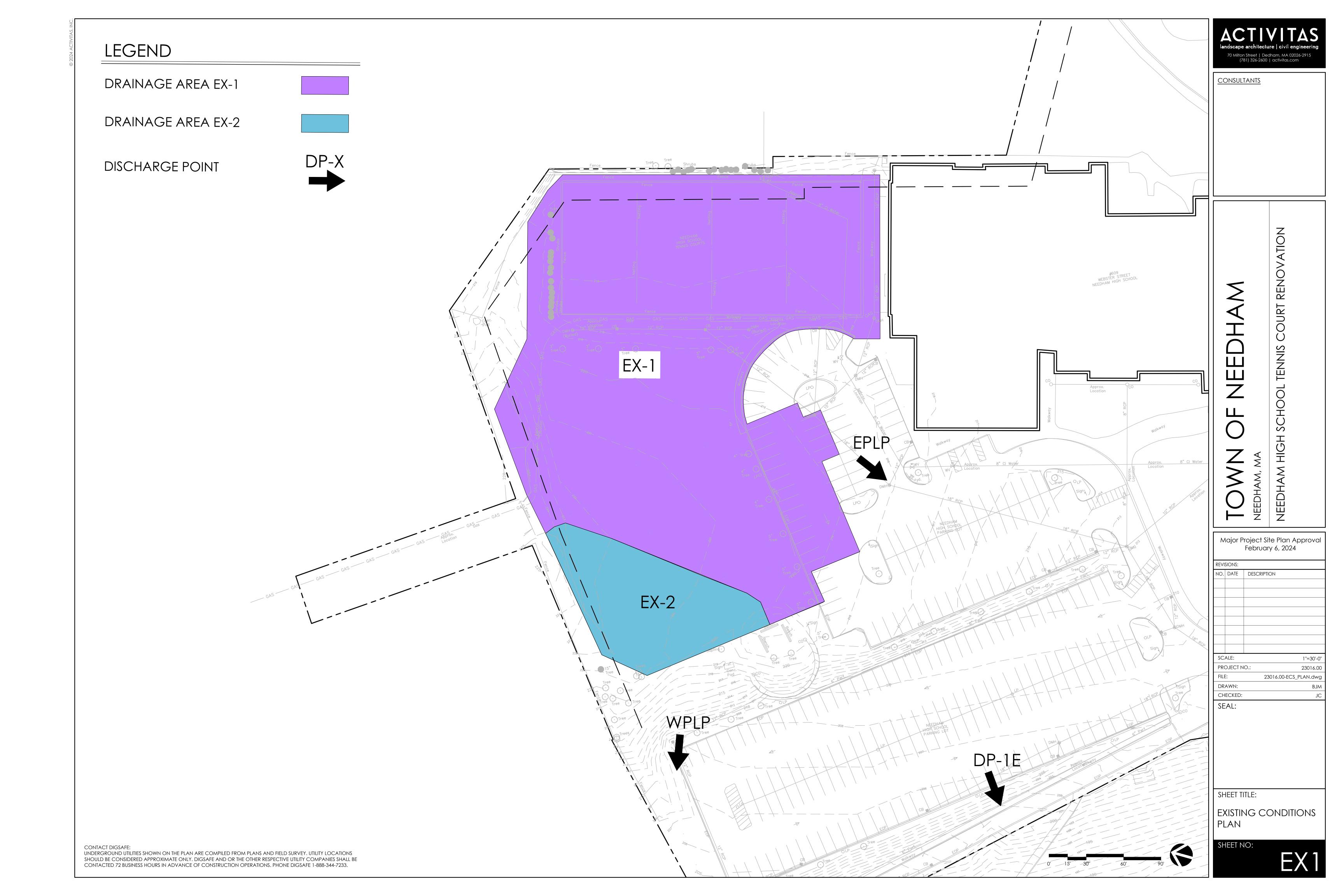

F-1. Rainfall Data for Massachusetts from Rainfall Frequency Atlas of the United States (TP-40)


Users of this Handbook should note that current MA DEP written guidance (see DEP Waterlines newsletter -- Fall 2000) requires the use of TP-40 Rainfall Data for calculations under the Wetlands Protection Regulations and the Stormwater Management Policy. More stringent design storms may be used under a local bylaw or ordinance. However, DEP will continue to require the use of TP-40 in any case it reviews under the Wetlands Protection Act and Stormwater Management Policy.

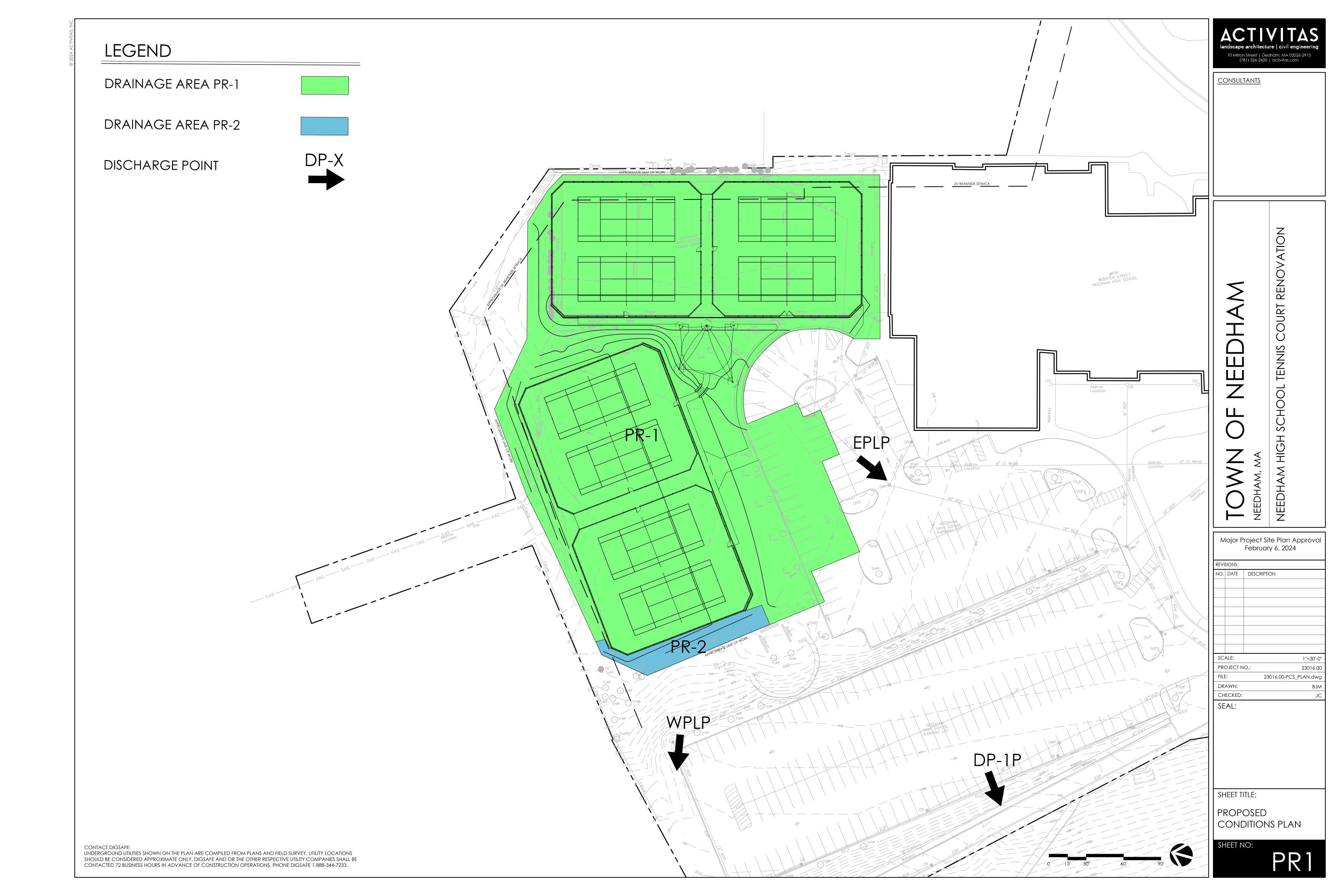

Adjusted Technical Paper 40 Design Storms for 24-hour Event by County


County Name	1-yr 24-hr	2-yr 24-hr	5-yr 24-hr	10-yr 24-hr	25-yr 24-hr	50-yr 24-hr	100-yr 24-hr
Barnstable	2.5	3.6	4.5	4.8	5.7	6.4	7.1
Berkshire	2.5	2.9	3.8	4.4	5.1	5.9	6.4
Bristol	2.5	3.4	4.3	4.8	5.6	6.3	7.0
Dukes	2.5	3.6	4.6	4.9	5.8	6.5	7.2
Essex	2.5	3.1	3.9	4.5	5.4	5.9	6.5
Franklin	2.5	2.9	3.8	4.3	5.1	5.8	6.2
Hampden	2.5	3.0	4.0	4.6	5.3	6.0	6.5
Hampshire	2.5	3.0	3.9	4.5	5.2	5.9	6.4
Middlesex	2.5	3.1	4.0	4.5	5.3	5.9	6.5
Nantucket	2.5	3.6	4.6	4.9	5.8	6.5	7.2
Norfolk	2.5	3.2	4.1	4.7	5.5	6.1	6.7
Plymouth	2.5	3.4	4.3	4.7	5.6	6.2	7.0
Suffolk	2.5	3.2	4.0	4.6	5.5	6.0	6.6
Worcester	2.5	3.0	4.0	4.5	5.3	5.9	6.5

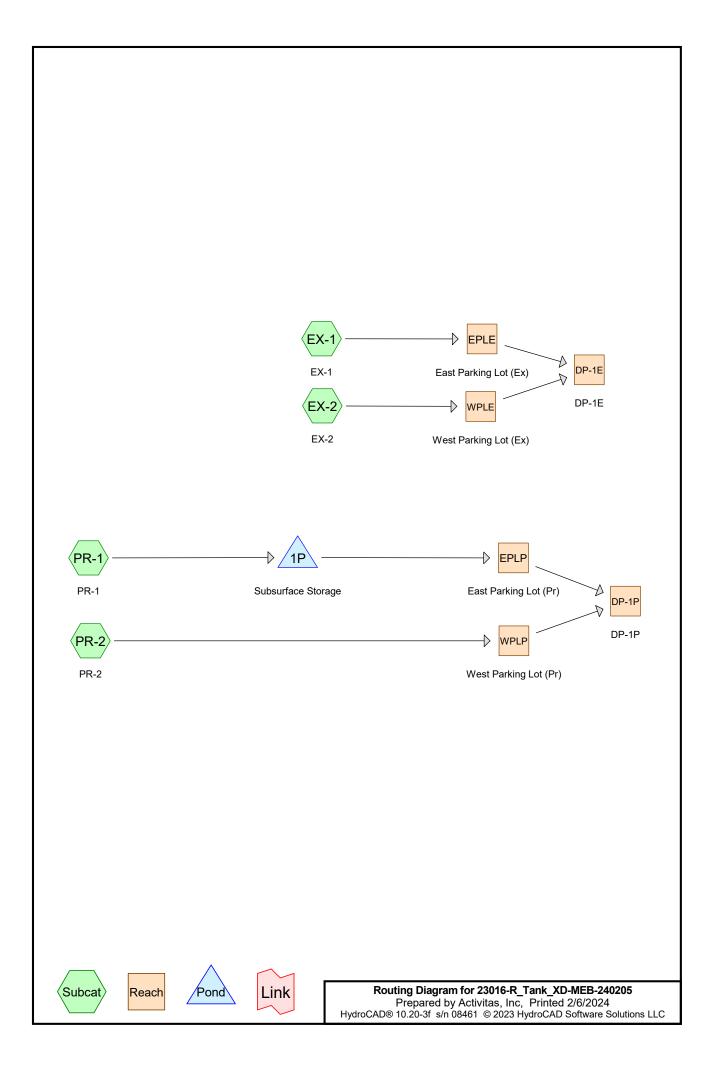




Page 12 of 15


Pre-Development Plan

Page 13 of 15


Post-Development Plan

Page 14 of 15

HydroCAD Report

Printed 2/6/2024 Page 2

Rainfall Events Listing

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2-Year-Storm	Type III 24-hr		Default	24.00	1	3.20	2
2	10-Year-Storm	Type III 24-hr		Default	24.00	1	4.70	2
3	100-Year-Storm	Type III 24-hr		Default	24.00	1	6.70	2

Printed 2/6/2024 Page 3

Area Listing (all nodes)

Д	rea CN	Description
(sc	q-ft)	(subcatchment-numbers)
57,	147 79	50-75% Grass cover, Fair, HSG C (EX-1, EX-2, PR-2)
22,	421 74	>75% Grass cover, Good, HSG C(PR-1)
102,	632 98	Unconnected pavement, HSG C (EX-1, PR-1)
182,	200 89	TOTAL AREA

Printed 2/6/2024 Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
182,200	HSG C	EX-1, EX-2, PR-1, PR-2
0	HSG D	
0	Other	
182,200		TOTAL AREA

Printed 2/6/2024 Page 5

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover
0	0	57,147	0	0	57,147	50-75%
						Grass cover,
						Fair
0	0	22,421	0	0	22,421	>75% Grass
						cover, Good
0	0	102,632	0	0	102,632	Unconnected
						pavement
0	0	182,200	0	0	182,200	TOTAL
						AREA

Prepared by Activitas, Inc HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC Printed 2/6/2024

Page 6

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX-1: EX-1	Runoff Area=79,516 sf	45.75% Impervious	Runoff Depth=2.00"
-------------------------	-----------------------	-------------------	--------------------

Tc=6.0 min CN=88 Runoff=4.17 cfs 13,233 cf

Subcatchment EX-2: EX-2 Runoff Area=11,584 sf 0.00% Impervious Runoff Depth=1.34"

Tc=6.0 min CN=79 Runoff=0.40 cfs 1,290 cf

Subcatchment PR-1: PR-1 Runoff Area=88,675 sf 74.72% Impervious Runoff Depth=2.35"

Tc=6.0 min CN=92 Runoff=5.36 cfs 17,370 cf

Subcatchment PR-2: PR-2 Runoff Area=2,425 sf 0.00% Impervious Runoff Depth=1.34"

Tc=6.0 min CN=79 Runoff=0.08 cfs 270 cf

Reach DP-1E: DP-1E Inflow=4.57 cfs 14,523 cf

Outflow=4.57 cfs 14.523 cf

Reach DP-1P: DP-1P Inflow=5.99 cfs 13,577 cf

Outflow=5.99 cfs 13,577 cf

Reach EPLE: East Parking Lot (Ex) Inflow=4.17 cfs 13,233 cf

Outflow=4.17 cfs 13,233 cf

Reach EPLP: East Parking Lot (Pr) Inflow=5.91 cfs 13,307 cf

Outflow=5.91 cfs 13,307 cf

Reach WPLE: West Parking Lot (Ex) Inflow=0.40 cfs 1,290 cf

Outflow=0.40 cfs 1.290 cf

Reach WPLP: West Parking Lot (Pr) Inflow=0.08 cfs 270 cf

Outflow=0.08 cfs 270 cf

Pond 1P: Subsurface Storage Peak Elev=216.60' Storage=3,199 cf Inflow=5.36 cfs 17,370 cf

Discarded=0.01 cfs 1,150 cf Primary=5.91 cfs 13,307 cf Outflow=5.93 cfs 14,457 cf

Total Runoff Area = 182,200 sf Runoff Volume = 32,163 cf Average Runoff Depth = 2.12" 43.67% Pervious = 79,568 sf 56.33% Impervious = 102,632 sf

Prepared by Activitas, Inc

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment EX-1: EX-1

Runoff = 4.17 cfs @ 12.09 hrs, Volume=

13,233 cf, Depth= 2.00"

Routed to Reach EPLE : East Parking Lot (Ex)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year-Storm Rainfall=3.20"

A	rea (sf)	CN	Description				
	43,138	79	50-75% Gra	ass cover, F	air, HSG C		
	36,378	98	Unconnecte	ed pavemer	nt, HSG C		
	79,516	88	Weighted Average				
	43,138		54.25% Pervious Area				
	36,378		45.75% Impervious Area				
	36,378		100.00% U	nconnected			
т.	ما فرم مرا	Class	- \/alaaitu	Canacitu	Decemention		
Tc	Length	Slop	•	Capacity	Description		
(min)	(feet)	(ft/f	(ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment EX-2: EX-2

Runoff = 0.40 cfs @ 12.10 hrs, Volume=

1,290 cf, Depth= 1.34"

Routed to Reach WPLE : West Parking Lot (Ex)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year-Storm Rainfall=3.20"

	rea (sf)	CN [Description				
	11,584	79 5	50-75% Grass cover, Fair, HSG C				
	11,584	•	100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment PR-1: PR-1

Runoff = 5.36 cfs @ 12.09 hrs, Volume= 17,370 cf, Depth= 2.35"

Routed to Pond 1P : Subsurface Storage

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year-Storm Rainfall=3.20"

Area (sf)	CN	Description
66,254	98	Unconnected pavement, HSG C
 22,421	74	>75% Grass cover, Good, HSG C
88,675	92	Weighted Average
22,421		25.28% Pervious Area
66,254		74.72% Impervious Area
66,254		100.00% Unconnected

Prepared by Activitas, Inc.

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

Page 8

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment PR-2: PR-2

0.08 cfs @ 12.10 hrs, Volume= Runoff

270 cf, Depth= 1.34"

Routed to Reach WPLP: West Parking Lot (Pr)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year-Storm Rainfall=3.20"

_	Α	rea (sf)	CN [Description				
		2,425	79 5	50-75% Grass cover, Fair, HSG C				
		2,425	1	100.00% Pervious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	6.0					Direct Entry.		

Summary for Reach DP-1E: DP-1E

91,100 sf, 39.93% Impervious, Inflow Depth = 1.91" for 2-Year-Storm event Inflow Area =

Inflow 4.57 cfs @ 12.09 hrs, Volume= 14,523 cf

Outflow 4.57 cfs @ 12.09 hrs, Volume= 14,523 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-1P: DP-1P

91,100 sf, 72.73% Impervious, Inflow Depth = 1.79" for 2-Year-Storm event Inflow Area =

5.99 cfs @ 12.06 hrs, Volume= Inflow 13.577 cf

Outflow 5.99 cfs @ 12.06 hrs, Volume= 13,577 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach EPLE: East Parking Lot (Ex)

79,516 sf, 45.75% Impervious, Inflow Depth = 2.00" for 2-Year-Storm event Inflow Area =

4.17 cfs @ 12.09 hrs, Volume= 4.17 cfs @ 12.09 hrs, Volume= Inflow 13,233 cf

13,233 cf, Atten= 0%, Lag= 0.0 min Outflow

Routed to Reach DP-1E: DP-1E

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach EPLP: East Parking Lot (Pr)

88,675 sf, 74.72% Impervious, Inflow Depth = 1.80" for 2-Year-Storm event Inflow Area =

Inflow 5.91 cfs @ 12.06 hrs, Volume= 13.307 cf

5.91 cfs @ 12.06 hrs, Volume= Outflow 13,307 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1P : DP-1P

Prepared by Activitas, Inc

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

Page 9

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach WPLE: West Parking Lot (Ex)

Inflow Area = 11,584 sf, 0.00% Impervious, Inflow Depth = 1.34" for 2-Year-Storm event

Inflow = 0.40 cfs @ 12.10 hrs, Volume= 1,290 cf

Outflow = 0.40 cfs @ 12.10 hrs, Volume= 1,290 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1E: DP-1E

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach WPLP: West Parking Lot (Pr)

Inflow Area = 2,425 sf, 0.00% Impervious, Inflow Depth = 1.34" for 2-Year-Storm event

Inflow = 0.08 cfs @ 12.10 hrs, Volume= 270 cf

Outflow = 0.08 cfs @ 12.10 hrs, Volume= 270 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1P: DP-1P

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond 1P: Subsurface Storage

Inflow Area = 88,675 sf, 74.72% Impervious, Inflow Depth = 2.35" for 2-Year-Storm event

Inflow = 5.36 cfs @ 12.09 hrs, Volume= 17,370 cf

Outflow = 5.93 cfs @ 12.06 hrs, Volume= 14,457 cf, Atten= 0%, Lag= 0.0 min

Discarded = 0.01 cfs @ 12.06 hrs, Volume= 1,150 cf Primary = 5.91 cfs @ 12.06 hrs, Volume= 13,307 cf

Routed to Reach EPLP: East Parking Lot (Pr)

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 216.60' @ 12.06 hrs Surf.Area= 3,434 sf Storage= 3,199 cf

Plug-Flow detention time= 119.6 min calculated for 14,433 cf (83% of inflow)

Center-of-Mass det. time= 52.4 min (850.2 - 797.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	213.41'	1,053 cf	33.53'W x 102.43'L x 1.57'H Field A
		·	5,392 cf Overall - 2,384 cf Embedded = 3,008 cf x 35.0% Voids
#2A	213.66'	2,145 cf	Ferguson R-Tank XD 5 x 900 Inside #1
			Inside= 19.7"W x 9.8"H => 1.21 sf x 1.97'L = 2.4 cf
			Outside= 19.7"W x 9.8"H => 1.35 sf x 1.97'L = 2.6 cf
			900 Chambers in 18 Rows
#3	214.98'	2 cf	Custom Stage Data (Prismatic) Listed below
		0.000 (T 1 1 A 3 1 1 1 O1

3,200 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
214.98	0	0	0
219.00	1	2	2

Type III 24-hr 2-Year-Storm Rainfall=3.20"

Prepared by Activitas, Inc HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC Printed 2/6/2024

Page 10

Routing Invert Outlet Devices Device 213.41' 0.170 in/hr Exfiltration over Surface area #1 Discarded #2 6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) Primary 216.25' #3 2.0" Vert. Orifice/Grate C= 0.600 Primary 214.98' Limited to weir flow at low heads 215.15' **8.0" Vert. Orifice/Grate** C= 0.600 #4 Primary Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 12.06 hrs HW=216.57' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=5.51 cfs @ 12.06 hrs HW=216.58' (Free Discharge)

2=Sharp-Crested Rectangular Weir (Weir Controls 3.62 cfs @ 1.87 fps)

-3=Orifice/Grate (Orifice Controls 0.13 cfs @ 5.92 fps)

-4=Orifice/Grate (Orifice Controls 1.76 cfs @ 5.03 fps)

Prepared by Activitas, Inc HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC Printed 2/6/2024

Page 11

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX-1: EX-1	Runoff Area=79,516 sf 4	15.75% Impervious	Runoff Depth=3.38"
-------------------------	-------------------------	-------------------	--------------------

Tc=6.0 min CN=88 Runoff=6.95 cfs 22,428 cf

Subcatchment EX-2: EX-2 Runoff Area=11,584 sf 0.00% Impervious Runoff Depth=2.55"

Tc=6.0 min CN=79 Runoff=0.78 cfs 2,457 cf

Subcatchment PR-1: PR-1 Runoff Area=88,675 sf 74.72% Impervious Runoff Depth=3.80"

Tc=6.0 min CN=92 Runoff=8.44 cfs 28,056 cf

Subcatchment PR-2: PR-2 Runoff Area=2,425 sf 0.00% Impervious Runoff Depth=2.55"

Tc=6.0 min CN=79 Runoff=0.16 cfs 514 cf

Reach DP-1E: DP-1E Inflow=7.72 cfs 24,885 cf

Outflow=7.72 cfs 24.885 cf

Reach DP-1P: DP-1P Inflow=8.92 cfs 24,430 cf

Outflow=8.92 cfs 24,430 cf

Reach EPLE: East Parking Lot (Ex) Inflow=6.95 cfs 22,428 cf

Outflow=6.95 cfs 22,428 cf

Reach EPLP: East Parking Lot (Pr) Inflow=8.75 cfs 23,915 cf

Outflow=8.75 cfs 23.915 cf

Reach WPLE: West Parking Lot (Ex) Inflow=0.78 cfs 2,457 cf

Outflow=0.78 cfs 2.457 cf

Reach WPLP: West Parking Lot (Pr) Inflow=0.16 cfs 514 cf

Outflow=0.16 cfs 514 cf

Pond 1P: Subsurface Storage Peak Elev=216.75' Storage=3,199 cf Inflow=8.44 cfs 28,056 cf

Discarded=0.01 cfs 1,229 cf Primary=8.75 cfs 23,915 cf Outflow=8.77 cfs 25,144 cf

Total Runoff Area = 182,200 sf Runoff Volume = 53,456 cf Average Runoff Depth = 3.52" 43.67% Pervious = 79,568 sf 56.33% Impervious = 102,632 sf

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

Page 12

Summary for Subcatchment EX-1: EX-1

Runoff = 6.95 cfs @ 12.09 hrs, Volume=

22,428 cf, Depth= 3.38"

Routed to Reach EPLE : East Parking Lot (Ex)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year-Storm Rainfall=4.70"

A	rea (sf)	CN	Description				
	43,138	79	50-75% Gra	50-75% Grass cover, Fair, HSG C			
	36,378	98	Unconnecte	Jnconnected pavement, HSG C			
	79,516	88	Weighted Average				
	43,138		54.25% Pervious Area				
	36,378		45.75% Impervious Area				
	36,378		100.00% Unconnected				
_		01			.		
Tc	Length	Slop	•	Capacity	Description		
(min)	(feet)	(ft/f	(ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment EX-2: EX-2

Runoff = 0.78 cfs @ 12.09 hrs, Volume=

2,457 cf, Depth= 2.55"

Routed to Reach WPLE : West Parking Lot (Ex)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year-Storm Rainfall=4.70"

	rea (sf)	CN [Description			
	11,584	79 5	50-75% Grass cover, Fair, HSG C			
	11,584	•	100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	

Summary for Subcatchment PR-1: PR-1

Runoff = 8.44 cfs @ 12.09 hrs, Volume= 28,056 cf, Depth= 3.80"

Routed to Pond 1P : Subsurface Storage

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year-Storm Rainfall=4.70"

Area (s	sf) CN	Description
66,25	54 98	Unconnected pavement, HSG C
22,42	21 74	>75% Grass cover, Good, HSG C
88,67	75 92	Weighted Average
22,42	21	25.28% Pervious Area
66,25	54	74.72% Impervious Area
66,25	54	100.00% Unconnected

Prepared by Activitas, Inc.

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

Page 13

(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry,	

Summary for Subcatchment PR-2: PR-2

0.16 cfs @ 12.09 hrs, Volume= Runoff Routed to Reach WPLP: West Parking Lot (Pr)

514 cf, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year-Storm Rainfall=4.70"

_	Α	rea (sf)	CN [Description				
		2,425	79 5	50-75% Grass cover, Fair, HSG C				
		2,425	1	100.00% Pervious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	6.0					Direct Entry.		

Summary for Reach DP-1E: DP-1E

91,100 sf. 39.93% Impervious, Inflow Depth = 3.28" for 10-Year-Storm event Inflow Area =

Inflow 7.72 cfs @ 12.09 hrs, Volume= 24.885 cf

Outflow 7.72 cfs @ 12.09 hrs, Volume= 24,885 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-1P: DP-1P

91,100 sf, 72.73% Impervious, Inflow Depth = 3.22" for 10-Year-Storm event Inflow Area =

Inflow 8.92 cfs @ 12.09 hrs, Volume= 24.430 cf

Outflow 8.92 cfs @ 12.09 hrs, Volume= 24,430 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach EPLE: East Parking Lot (Ex)

79,516 sf, 45.75% Impervious, Inflow Depth = 3.38" for 10-Year-Storm event Inflow Area =

6.95 cfs @ 12.09 hrs, Volume= 6.95 cfs @ 12.09 hrs, Volume= Inflow 22,428 cf

Outflow 22,428 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1E: DP-1E

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach EPLP: East Parking Lot (Pr)

88,675 sf, 74.72% Impervious, Inflow Depth = 3.24" for 10-Year-Storm event Inflow Area =

Inflow 8.75 cfs @ 12.09 hrs, Volume= 23.915 cf

8.75 cfs @ 12.09 hrs, Volume= Outflow 23,915 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1P : DP-1P

Prepared by Activitas, Inc

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

<u>Page 14</u>

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach WPLE: West Parking Lot (Ex)

Inflow Area = 11,584 sf, 0.00% Impervious, Inflow Depth = 2.55" for 10-Year-Storm event

Inflow = 0.78 cfs @ 12.09 hrs, Volume= 2,457 cf

Outflow = 0.78 cfs @ 12.09 hrs, Volume= 2,457 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1E: DP-1E

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach WPLP: West Parking Lot (Pr)

Inflow Area = 2,425 sf, 0.00% Impervious, Inflow Depth = 2.55" for 10-Year-Storm event

Inflow = 0.16 cfs @ 12.09 hrs, Volume= 514 cf

Outflow = 0.16 cfs @ 12.09 hrs, Volume= 514 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1P: DP-1P

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond 1P: Subsurface Storage

Inflow Area = 88,675 sf, 74.72% Impervious, Inflow Depth = 3.80" for 10-Year-Storm event

Inflow = 8.44 cfs @ 12.09 hrs, Volume= 28,056 cf

Outflow = 8.77 cfs @ 12.09 hrs, Volume= 25,144 cf, Atten= 0%, Lag= 0.3 min

Discarded = 0.01 cfs @ 12.09 hrs, Volume= 1,229 cf Primary = 8.75 cfs @ 12.09 hrs, Volume= 23,915 cf

Routed to Reach EPLP: East Parking Lot (Pr)

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 216.75' @ 12.09 hrs Surf.Area= 3,435 sf Storage= 3,199 cf

Plug-Flow detention time= 89.1 min calculated for 25,144 cf (90% of inflow)

Center-of-Mass det. time= 39.1 min (823.8 - 784.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	213.41'	1,053 cf	33.53'W x 102.43'L x 1.57'H Field A
			5,392 cf Overall - 2,384 cf Embedded = 3,008 cf x 35.0% Voids
#2A	213.66'	2,145 cf	Ferguson R-Tank XD 5 x 900 Inside #1
			Inside= 19.7"W x 9.8"H => 1.21 sf x 1.97'L = 2.4 cf
			Outside= 19.7"W x 9.8"H => 1.35 sf x 1.97'L = 2.6 cf
			900 Chambers in 18 Rows
#3	214.98'	2 cf	Custom Stage Data (Prismatic) Listed below
	-	0.000 .f	Tatal Assilable Otensons

3,200 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store (cubic-feet)
(feet)	(sq-ft)	(cubic-feet)	
214.98 219.00	0	0	0

Type III 24-hr 10-Year-Storm Rainfall=4.70"

Prepared by Activitas, Inc HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC Printed 2/6/2024

Page 15

Device	Routing	Invert	Outlet Devices
#1	Discarded	213.41'	0.170 in/hr Exfiltration over Surface area
#2	Primary	216.25'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Primary	214.98'	2.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	215.15'	8.0" Vert. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 12.09 hrs HW=216.73' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=8.50 cfs @ 12.09 hrs HW=216.73' (Free Discharge)

2=Sharp-Crested Rectangular Weir (Weir Controls 6.49 cfs @ 2.27 fps)

-3=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.22 fps)

-4=Orifice/Grate (Orifice Controls 1.88 cfs @ 5.38 fps)

Prepared by Activitas, Inc HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC Printed 2/6/2024

Page 16

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX-1: EX-1	Runoff Area=79,516 sf	45.75% Impervious	Runoff Depth=5.30"
-------------------------	-----------------------	-------------------	--------------------

Tc=6.0 min CN=88 Runoff=10.64 cfs 35,135 cf

Subcatchment EX-2: EX-2 Runoff Area=11,584 sf 0.00% Impervious Runoff Depth=4.31"

Tc=6.0 min CN=79 Runoff=1.31 cfs 4,161 cf

Subcatchment PR-1: PR-1 Runoff Area=88,675 sf 74.72% Impervious Runoff Depth=5.76"

Tc=6.0 min CN=92 Runoff=12.50 cfs 42,555 cf

Subcatchment PR-2: PR-2 Runoff Area=2,425 sf 0.00% Impervious Runoff Depth=4.31"

Tc=6.0 min CN=79 Runoff=0.27 cfs 871 cf

Reach DP-1E: DP-1E Inflow=11.95 cfs 39,296 cf

Outflow=11.95 cfs 39.296 cf

Reach DP-1P: DP-1P Inflow=12.77 cfs 39,224 cf

Outflow=12.77 cfs 39,224 cf

Reach EPLE: East Parking Lot (Ex) Inflow=10.64 cfs 35,135 cf

Outflow=10.64 cfs 35,135 cf

Reach EPLP: East Parking Lot (Pr) Inflow=12.50 cfs 38,353 cf

Outflow=12.50 cfs 38.353 cf

Reach WPLE: West Parking Lot (Ex) Inflow=1.31 cfs 4,161 cf

Outflow=1.31 cfs 4.161 cf

Reach WPLP: West Parking Lot (Pr) Inflow=0.27 cfs 871 cf

Outflow=0.27 cfs 871 cf

Pond 1P: Subsurface Storage Peak Elev=216.91' Storage=3,199 cf Inflow=12.50 cfs 42,555 cf Discarded=0.01 cfs 1,288 cf Primary=12.50 cfs 38,353 cf Outflow=12.51 cfs 39,641 cf

Total Runoff Area = 182,200 sf Runoff Volume = 82,722 cf Average Runoff Depth = 5.45" 43.67% Pervious = 79,568 sf 56.33% Impervious = 102,632 sf

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

Page 17

Summary for Subcatchment EX-1: EX-1

Runoff = 10.64 cfs @ 12.09 hrs, Volume= Routed to Reach EPLE : East Parking Lot (Ex) 35,135 cf, Depth= 5.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year-Storm Rainfall=6.70"

A	rea (sf)	CN	Description						
	43,138	79	50-75% Gra	ass cover, F	air, HSG C				
	36,378	98	Unconnecte	Jnconnected pavement, HSG C					
	79,516	88	88 Weighted Average						
	43,138		54.25% Pervious Area						
	36,378	8 45.75% Impervious Area							
	36,378	100.00% Unconnected							
_									
Tc	Length	Slop	,	Capacity	Description				
(min)	(feet)	(ft/f	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment EX-2: EX-2

Runoff = 1.31 cfs @ 12.09 hrs, Volume=

4,161 cf, Depth= 4.31"

Routed to Reach WPLE : West Parking Lot (Ex)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year-Storm Rainfall=6.70"

A	rea (sf)	CN I	Description						
	11,584	79 :	0-75% Grass cover, Fair, HSG C						
	11,584		100.00% Pe	ervious Are	а				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment PR-1: PR-1

Runoff = 12.50 cfs @ 12.09 hrs, Volume= 42,555 cf, Depth= 5.76"

Routed to Pond 1P : Subsurface Storage

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year-Storm Rainfall=6.70"

Area (sf)	CN	Description
66,254	98	Unconnected pavement, HSG C
 22,421	74	>75% Grass cover, Good, HSG C
88,675	92	Weighted Average
22,421		25.28% Pervious Area
66,254		74.72% Impervious Area
66,254		100.00% Unconnected

Prepared by Activitas, Inc.

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

Page 18

Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•	
6.0					Direct Entry,	

Summary for Subcatchment PR-2: PR-2

0.27 cfs @ 12.09 hrs, Volume= Runoff

871 cf, Depth= 4.31"

Routed to Reach WPLP: West Parking Lot (Pr)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year-Storm Rainfall=6.70"

_	Α	rea (sf)	CN [Description						
		2,425	79 5	0-75% Grass cover, Fair, HSG C						
		2,425	1	00.00% Pe	ervious Are	ea				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	6.0					Direct Entry.				

Summary for Reach DP-1E: DP-1E

91,100 sf, 39.93% Impervious, Inflow Depth = 5.18" for 100-Year-Storm event Inflow Area =

Inflow 11.95 cfs @ 12.09 hrs, Volume= 39,296 cf

Outflow 11.95 cfs @ 12.09 hrs, Volume= 39,296 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-1P: DP-1P

91,100 sf, 72.73% Impervious, Inflow Depth = 5.17" for 100-Year-Storm event Inflow Area =

12.77 cfs @ 12.09 hrs, Volume= Inflow 39.224 cf

Outflow 12.77 cfs @ 12.09 hrs, Volume= 39,224 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach EPLE: East Parking Lot (Ex)

79,516 sf, 45.75% Impervious, Inflow Depth = 5.30" for 100-Year-Storm event Inflow Area =

10.64 cfs @ 12.09 hrs, Volume= 10.64 cfs @ 12.09 hrs, Volume= Inflow 35,135 cf

Outflow 35,135 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1E: DP-1E

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach EPLP: East Parking Lot (Pr)

88,675 sf, 74.72% Impervious, Inflow Depth = 5.19" for 100-Year-Storm event Inflow Area =

Inflow 12.50 cfs @ 12.09 hrs, Volume= 38.353 cf

12.50 cfs @ 12.09 hrs, Volume= Outflow 38,353 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1P: DP-1P

Printed 2/6/2024

HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC

Page 19

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach WPLE: West Parking Lot (Ex)

Inflow Area = 11,584 sf, 0.00% Impervious, Inflow Depth = 4.31" for 100-Year-Storm event

Inflow = 1.31 cfs @ 12.09 hrs, Volume= 4,161 cf

Outflow = 1.31 cfs @ 12.09 hrs, Volume= 4,161 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1E: DP-1E

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach WPLP: West Parking Lot (Pr)

Inflow Area = 2,425 sf, 0.00% Impervious, Inflow Depth = 4.31" for 100-Year-Storm event

Inflow = 0.27 cfs @ 12.09 hrs, Volume= 871 cf

Outflow = 0.27 cfs @ 12.09 hrs, Volume= 871 cf, Atten= 0%, Lag= 0.0 min

Routed to Reach DP-1P: DP-1P

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond 1P: Subsurface Storage

Inflow Area = 88,675 sf, 74.72% Impervious, Inflow Depth = 5.76" for 100-Year-Storm event

Inflow = 12.50 cfs @ 12.09 hrs, Volume= 42,555 cf

Outflow = 12.51 cfs @ 12.09 hrs, Volume= 39,641 cf, Atten= 0%, Lag= 0.0 min

Discarded = 0.01 cfs @ 12.09 hrs, Volume= 1,288 cf Primary = 12.50 cfs @ 12.09 hrs, Volume= 38,353 cf

Routed to Reach EPLP: East Parking Lot (Pr)

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 216.91' @ 12.09 hrs Surf.Area= 3,435 sf Storage= 3,199 cf

Plug-Flow detention time= 67.8 min calculated for 39,641 cf (93% of inflow)

Center-of-Mass det. time= 31.0 min (804.9 - 774.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	213.41'	1,053 cf	33.53'W x 102.43'L x 1.57'H Field A
			5,392 cf Overall - 2,384 cf Embedded = 3,008 cf x 35.0% Voids
#2A	213.66'	2,145 cf	Ferguson R-Tank XD 5 x 900 Inside #1
			Inside= 19.7"W x 9.8"H => 1.21 sf x 1.97'L = 2.4 cf
			Outside= 19.7"W x 9.8"H => 1.35 sf x 1.97'L = 2.6 cf
			900 Chambers in 18 Rows
#3	214.98'	2 cf	Custom Stage Data (Prismatic) Listed below
<u> </u>	-	0.000 .f	Tatal Assilable Otensons

3,200 cf Total Available Storage

Storage Group A created with Chamber Wizard

(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
214.98 219.00	0	0	0

Type III 24-hr 100-Year-Storm Rainfall=6.70"

Prepared by Activitas, Inc HydroCAD® 10.20-3f s/n 08461 © 2023 HydroCAD Software Solutions LLC Printed 2/6/2024

Page 20

Device	Routing	Invert	Outlet Devices
#1	Discarded	213.41'	0.170 in/hr Exfiltration over Surface area
#2	Primary	216.25'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Primary	214.98'	2.0" Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	215.15'	8.0" Vert. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 12.09 hrs HW=216.90' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=12.16 cfs @ 12.09 hrs HW=216.90' (Free Discharge)

2=Sharp-Crested Rectangular Weir (Weir Controls 10.02 cfs @ 2.63 fps)

-3=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.52 fps)

-4=Orifice/Grate (Orifice Controls 2.00 cfs @ 5.73 fps)

Page 15 of 15

Operations & Maintenance Plan

Operation and Maintenance Plan

Town of Needham

Needham High School Tennis

Court Renovation

609 Webster Street
Needham, Massachusetts

Owner:

Town of Needham 1471 Highland Ave Needham, MA 02492 (781) 455-7500

Submitted To:

Town of Needham Planning Board 1471 Highland Ave Needham, MA 02492 (781) 455-7526

Applicant:

Activitas, Inc. 70 Milton Street Dedham, MA 02026 (781) 355-7040

Table of Contents

Table of Contents	
1.0 Operation and Maintenance Plan	
1.1 Area Drains	
1.2 Subsurface Chamber System	
1.3 Outlet Control Structure	
1.4 Vegetated Areas Maintenance	2
1.5 Spill Prevention and Control Plan	
2.0 Appendices	
2.1 Operations and Maintenance Loas	

1.0 Operation and Maintenance Plan

The Town of Needham High School Tennis project site is subject to Standard 9 - Operation and Maintenance Plan of the Massachusetts Stormwater Handbook, This Operation and Maintenance Plan details management recommendations for long-term pollution prevention.

The area to be renovated is the existing Needham High School Tennis Facility located at 609 Webster Street. The project scope is limited to an area of approximately 2.09 acres. The project consists of installation of four (4) new tennis courts, renovations to the existing four (4) tennis courts, ADA accessible walkways leading from the parking lot to tennis court areas, new spectator seating areas, and drainage improvements.

The surfacing types within the limit of work consist of cement concrete, post tension concrete, bituminous asphalt, and grassed areas.

1.1 Area Drains

Area drains should be cleaned twice per year. Area drains should be checked at least four times a year and at the end of the foliage and snow-removal seasons.

- Record all maintenance and repairs. Submit reports every year for compliance.
- Inspect all area drains after every storm (or at least four times a year) and at the end of the foliage and snow-removal seasons.
- If sediment is more than six inches deep and/or there are floatable pollutants, they will be removed from the drain and disposed of.
- During colder periods, area drain grates shall be kept free of ice and snow.
- During warmer periods, area drain grates shall be kept free of leaves, litter, sand, and other debris.

1.2 Subsurface Chamber System

The subsurface chamber system should be inspected monthly within the first year of installation. Inspections should begin with upstream and downstream structures for signs of sediment or other debris and standing water in the upstream manhole. Use of a pipe camera is recommended to inspect the pipes and chambers. The recharge system has been designed with inspection ports at the end of each row of chambers. If warranted, sections of the turf field should be removed, and inspection ports accessed.

- The owner shall keep a maintenance log which shall include details of any events which would have an effect on the system's operational capacity.
- The operation and maintenance procedure shall be reviewed periodically and changed to meet site
 conditions.
- Maintenance of the stormwater management system shall be performed by qualified workers and shall follow applicable occupational health and safety requirements.

Debris removed from the stormwater management system shall be disposed of in accordance with

1.3 Outlet Control Structure

There will be one outlet control structure on site to control the flow out of the tennis court drainage system. The outlet control structure should be inspected twice each year and cleaned twice per year. The outlet control structure should be checked at least four times a year and at the end of the foliage and snow-removal season.

- Record all maintenance and repairs. Submit reports every year for compliance.
- Inspect the outlet control structure every storm (or at least four times a year) and at the end of the foliage and snow-removal season.
- If sediment is more than six inches deep and/or there are floatable pollutants, they will be removed from the outlet control structure and disposed of.

1.4 Vegetated Areas Maintenance

Although not a structural component of the drainage system, the maintenance of vegetated areas may affect the function of stormwater management practices. This includes the health/density of vegetative cover and activities such as the application and disposal of lawn and garden care products, disposal of leaves and yard trimmings.

- Inspect planted areas on a semi-annual basis and remove any litter.
- Maintain planted areas adjacent to pavement to prevent soil washout.
- Immediately clean any soil deposited on pavement.
- Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming.
- Plant alternative mixture of grass species in the event of unsuccessful establishment.

1.5 Spill Prevention and Control Plan

The Property Owner will be responsible for training of people in the proper handling and cleanup of spilled materials. No spilled hazardous materials or hazardous wastes will be allowed to come in contact with stormwater discharges. If such contact occurs, the stormwater discharge will be contained on site until appropriate measures in compliance with state and federal regulations are taken to dispose of such contaminated stormwater.

In order to minimize the potential for a spill of hazardous materials to come into contact with stormwater, the following steps will be implemented:

- 1. All materials with hazardous properties (such as pesticides, petroleum products, fertilizers, detergents, construction chemicals, acids, paints, paint solvents, cleaning solvents, additives for soil stabilization, concrete curing compounds and additives, etc.) will be stored in a secure location, with their lids on, preferably under cover, when not in use.
- 2. The minimum practical quantity of all such materials will be kept on the site.
- 3. A spill control and containment kit (containing, for example, absorbent materials, acid neutralizing powder, brooms, dustpans, mops, rags, gloves, goggles, plastic and metal trash containers, etc.) will be provided at the maintenance area of the site.
- 4. Manufacturers recommended methods for spill cleanup will be clearly posted and site personnel will be trained regarding these procedures and the location of the information and cleanup supplies.

In the event of a spill, the following procedures should be followed:

- 1. All spills will be cleaned up immediately after discovery.
- 2. The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with hazardous substances.
- 3. The Owner will be notified immediately.
- 4. Spills of toxic or hazardous materials will be reported to the appropriate federal, state, and/or local government agency, regardless of the size of the spill.

The Property Owner will be the spill prevention and response coordinator. He will designate the individuals who will receive spill prevention and response training. These individuals will each become responsible for a particular phase of prevention and response. The names of these personnel will be posted in the material storage area and other applicable areas onsite.

2.0 Appendices

2.1 Operations and Maintenance Logs

Inspection for Year:	
----------------------	--

NOTE: See Operations and Maintenance Plan for details of inspection requirements.

Structural Best Management Practice	Action	Date Completed	Comments	Completed By	Action	Date Completed	Comments	Completed By
Area Drains	Inspect				Clean (if required— See Plan for details.)			
Outlet Control Structure	Inspect				Clean (if required— See Plan for details.)			
Subsurface Recharge System—Inspect every 5 years, clean as required.	Inspect				Clean (if required— See Plan for details.)			